### CERTIFICATION

SDG No:

1701428B

Laboratory:

Eurofins, Folson, CA

Site:

BMSMC

Matrix:

Air

SUMMARY:

Air samples (Table 1) were collected on the BMSMC facility. The BMSMC facility is located in Humacao, PR. Samples were taken January 24 & 26, 2017 and were analyzed in Eurofins Laboratory of Folson, California that reported the data under SDG No.: 1701428B. Results were validated using the validation guidelines of Compendium Method TO-15. Determination of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters and Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), January, 1999. USEPA Hazardous Waste Support Branch. Validating Air Samples. Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15, (SOP # HW-31. Revision #6. June, 2014). The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample summary form shows analyte results that were qualified.

In summary, the results are valid and can be used for decision making purposes.

Table 1. Samples analyzed and analysis performed

| SAMPLE ID    | SAMPLE DESCRIPTION | MATRIX | ANALYSIS PERFORMED |
|--------------|--------------------|--------|--------------------|
| 1701428B-16A | B8SS-2-012417      | Air    | TO-15 (full suite) |
| 1701428B-17A | B8SS-2D-012417     | Air    | TO-15 (full suite) |
| 1701428B-18A | B18SS-1-012617     | Air    | TO-15 (full suite) |
| 1701428B-19A | B18SS-1Dup-012617  | Air    | TO-15 (full suite) |

Méndez

IC # 10

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

March 18, 2017



Client Sample ID: B8SS-2-012417 Lab ID#: 1701428B-16A

EPA METHOD TO-15 GC/MS

| File Name:<br>Dil. Factor:       | 14020610<br>24.9     |                  | of Analysis: 2/6      | /24/17 3:35:00 PM<br>/17 02:24 PM |
|----------------------------------|----------------------|------------------|-----------------------|-----------------------------------|
| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3)                 |
| Freon 12                         | 120                  | Not Detected     | 620                   | Not Detected                      |
| Freon 114                        | 120                  | Not Detected     | 870                   | Not Detected                      |
| Chloromethane                    | 500                  | Not Detected     | 1000                  | Not Detected                      |
| Vinyl Chloride                   | 120                  | Not Detected     | 320                   | Not Detected                      |
| 1,3-Butadiene                    | 120                  | Not Detected     | 280                   | Not Detected                      |
| Bromomethane                     | 500                  | Not Detected     | 1900                  | Not Detected                      |
| Chloroethane                     | 500                  | Not Detected     | 1300                  | Not Detected                      |
| Freon 11                         | 120                  | Not Detected     | 700                   | Not Detected                      |
| Ethanol                          | 500                  | Not Detected     | 940                   | Not Detected                      |
| Freon 113                        | 120                  | Not Detected     | 950                   | Not Detected                      |
| 1,1-Dichloroethene               | 120                  | Not Detected     | 490                   | Not Detected                      |
| Acetone                          | 500                  | Not Detected     | 1200                  | Not Detected                      |
| 2-Propanol                       | 500                  | Not Detected     | 1200                  | Not Detected                      |
| Carbon Disulfide                 | 500                  | Not Detected     | 1600                  | Not Detected                      |
| 3-Chloropropene                  | 500                  | Not Detected     | 1600                  | Not Detected                      |
| Methylene Chloride               | 500                  | Not Detected     | 1700                  | Not Detected                      |
| Methyl tert-butyl ether          | 120                  | 250              | 450                   | 920                               |
| trans-1,2-Dichloroethene         | 120                  | Not Detected     | 490                   | Not Detected                      |
| Hexane                           | 120                  | 360              | 440                   | 1300                              |
| 1,1-Dichloroethane               | 120                  | Not Detected     | 500                   | Not Detected                      |
| 2-Butanone (Methyl Ethyl Ketone) | 500                  | Not Detected     | 1500                  | Not Detected                      |
| cis-1,2-Dichloroethene           | 120                  | Not Detected     | 490                   | Not Detected                      |
| Tetrahydrofuran                  | 120                  | Not Detected     | 370                   | Not Detected                      |
| Chloroform                       | 120                  | Not Detected     | 610                   | Not Detected                      |
| 1,1,1-Trichloroethane            | 120                  | Not Detected     | 680                   | Not Detected                      |
| Cyclohexane                      | 120                  | 1000             | 430                   | 3600                              |
| Carbon Tetrachloride             | 120                  | Not Detected     | 780                   | Not Detected                      |
| 2,2,4-Trimethylpentane           | 120                  | Not Detected     | 580                   | Not Detected                      |
| Benzene                          | 120                  | Not Detected     | 400                   | Not Detected                      |
| 1,2-Dichloroethane               | 120                  | Not Detected     | 500                   | Not Detected                      |
| Heptane                          | 120                  | 480              | 510                   | 2000                              |
| Trichloroethene                  | 120                  | Not Detected     | 670                   | Not Detected                      |
| 1,2-Dichloropropane              | 120                  | Not Detected     | 580                   | Not Detected                      |
| 1,4-Dioxane                      | 500                  | Not Detected     | 1800                  | Not Detected                      |
| Bromodichloromethane             | 120                  | Not Detected     | 830                   | Not Detected                      |
| cis-1,3-Dichloropropene          | 120                  | Not Detected     | 560                   |                                   |
| 4-Methyl-2-pentanone             | 120                  | Not Detected     | 510                   | Not Later to                      |
| Toluene                          | 120                  | Not Detected     | 470                   | Not Detected                      |
| trans-1,3-Dichloropropene        | 120                  | Not Detected     | 560                   | Notificated                       |
| 1,1,2-Trichloroethane            | 120                  | Not Detected     | 680                   | Not Detected                      |
| Tetrachloroethene                | 120                  | Not Detected     | 840                   | Not Deteland                      |
| 2-Hexanone                       | 500                  | Not Detected     | 2000                  | Not Detected                      |
| - Honditotto                     | <b>400</b>           |                  |                       | Moderation                        |



Client Sample ID: B8SS-2-012417 Lab ID#: 1701428B-16A

# EPA METHOD TO-15 GC/MS

File Name: 14020610 Date of Collection: 1/24/17 3:35:00 PM
Dil. Factor: 24.9 Date of Analysis: 2/6/17 02:24 PM

| Compound                  | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|---------------------------|----------------------|------------------|-----------------------|-------------------|
| Dibromochloromethane      | 120                  | Not Detected     | 1100                  | Not Detected      |
| 1,2-Dibromoethane (EDB)   | 120                  | Not Detected     | 960                   | Not Detected      |
| Chlorobenzene             | 120                  | Not Detected     | 570                   | Not Detected      |
| Ethyl Benzene             | 120                  | Not Detected     | 540                   | Not Detected      |
| m,p-Xylene                | 120                  | 52 J             | 540                   | 220 J             |
| o-Xylene                  | 120                  | Not Detected     | 540                   | Not Detected      |
| Styrene                   | 120                  | Not Detected     | 530                   | Not Detected      |
| Bromoform                 | 120                  | Not Detected     | 1300                  | Not Detected      |
| Cumene                    | 120                  | 130              | 610                   | 640               |
| 1,1,2,2-Tetrachloroethane | 120                  | Not Detected     | 850                   | Not Detected      |
| Propylbenzene             | 120                  | Not Detected     | 610                   | Not Detected      |
| 4-Ethyltoluene            | 120                  | Not Detected     | 610                   | Not Detected      |
| 1,3,5-Trimethylbenzene    | 120                  | Not Detected     | 610                   | Not Detected      |
| 1,2,4-Trimethylbenzene    | 120                  | Not Detected     | 610                   | Not Detected      |
| 1.3-Dichlorobenzene       | 120                  | Not Detected     | 750                   | Not Detected      |
| 1,4-Dichlorobenzene       | 120                  | Not Detected     | 750                   | Not Detected      |
| alpha-Chlorotoluene       | 120                  | Not Detected     | 640                   | Not Detected      |
| 1,2-Dichlorobenzene       | 120                  | Not Detected     | 750                   | Not Detected      |
| 1,2,4-Trichlorobenzene    | 500                  | Not Detected     | 3700                  | Not Detected      |
| Hexachlorobutadiene       | 500                  | Not Detected     | 5300                  | Not Detected      |
| Naphthalene               | 500                  | Not Detected     | 2600                  | Not Detected      |

J = Estimated value.

Container Type: 1 Liter Summa Canister (100% Certified)

|                       |           | Metiton |
|-----------------------|-----------|---------|
| Surrogates            | %Recovery | Limits  |
| 1,2-Dichloroethane-d4 | 96        | 70-130  |
| Toluene-d8            | 97        | 70-130  |
| 4-Bromofluorobenzene  | 102       | 70-130  |



# Client Sample ID: B8SS-2D-012417 Lab ID#: 1701428B-17A

# EPA METHOD TO-15 GC/MS

| File Name:<br>Dil. Factor:       | 14020611<br>24.2     |                              | of Collection: 1/2 of Analysis: 2/6/ |              |
|----------------------------------|----------------------|------------------------------|--------------------------------------|--------------|
| DII. Factor.                     |                      |                              |                                      | Amount       |
| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv)             | Rpt. Limit<br>(ug/m3)                | (ug/m3)      |
| Freon 12                         | 120                  | Not Detected                 | 600                                  | Not Detected |
| Freon 114                        | 120                  | Not Detected                 | 840                                  | Not Detected |
| Chloromethane                    | 480                  | Not Detected                 | 1000                                 | Not Detected |
| Vinyl Chloride                   | 120                  | Not Detected                 | 310                                  | Not Detected |
| 1,3-Butadiene                    | 120                  | Not Detected                 | 270                                  | Not Detected |
| Bromomethane                     | 480                  | Not Detected                 | 1900                                 | Not Detected |
| Chloroethane                     | 480                  | Not Detected                 | 1300                                 | Not Detected |
| Freon 11                         | 120                  | Not Detected                 | 680                                  | Not Detected |
| Ethanol                          | 480                  | Not Detected                 | 910                                  | Not Detected |
| Freon 113                        | 120                  | Not Detected                 | 930                                  | Not Detected |
| 1,1-Dichloroethene               | 120                  | Not Detected                 | 480                                  | Not Detected |
| Acetone                          | 480                  | Not Detected                 | 1100                                 | Not Detected |
| 2-Propanol                       | 480                  | Not Detected                 | 1200                                 | Not Detected |
| Carbon Disulfide                 | 480                  | Not Detected                 | 1500                                 | Not Detected |
| 3-Chloropropene                  | 480                  | Not Detected                 | 1500                                 | Not Detected |
| Methylene Chloride               | 480                  | Not Detected                 | 1700                                 | Not Detected |
| Methyl tert-butyl ether          | 120                  | 250                          | 440                                  | 900          |
| trans-1,2-Dichloroethene         | 120                  | Not Detected                 | 480                                  | Not Detected |
| Hexane                           | 120                  | 360                          | 430                                  | 1300         |
| 1,1-Dichloroethane               | 120                  | Not Detected                 | 490                                  | Not Detected |
| 2-Butanone (Methyl Ethyl Ketone) | 480                  | Not Detected                 | 1400                                 | Not Detected |
| cis-1,2-Dichloroethene           | 120                  | Not Detected                 | 480                                  | Not Detected |
| Tetrahydrofuran                  | 120                  | Not Detected                 | 360                                  | Not Detected |
| Chloroform                       | 120                  | Not Detected                 | 590                                  | Not Detected |
| 1,1,1-Trichloroethane            | 120                  | Not Detected                 | 660                                  | Not Detected |
|                                  | 120                  | 980                          | 420                                  | 3400         |
| Cyclohexane                      | 120                  | Not Detected                 | 760                                  | Not Detected |
| Carbon Tetrachloride             |                      | 100 J                        | 560                                  | 470 J        |
| 2,2,4-Trimethylpentane           | 120<br>120           | Not Detected                 | 390                                  | Not Detected |
| Benzene<br>1.2 Dieblereethene    | 120                  | Not Detected                 | 490                                  | Not Detected |
| 1,2-Dichloroethane               |                      | 440                          |                                      | 1800         |
| Heptane<br>Trickland them.       | 120                  |                              | 500<br>650                           | Not Detected |
| Trichloroethene                  | 120                  | Not Detected                 | 560                                  | Not Detected |
| 1,2-Dichloropropane              | 120                  | Not Detected                 | 1700                                 | Not Detected |
| 1,4-Dioxane                      | 480<br>120           | Not Detected<br>Not Detected | 810                                  | Not Detected |
| Bromodichloromethane             |                      |                              |                                      |              |
| cis-1,3-Dichloropropene          | 120                  | Not Detected                 | 550                                  | Not Detected |
| 4-Methyl-2-pentanone             | 120                  | Not Detected                 | 500                                  | Change 635   |
| Toluene                          | 120                  | 21 J                         | 460                                  | 81 3         |
| trans-1,3-Dichloropropene        | 120                  | Not Detected                 | 550                                  | Not Detected |
| 1,1,2-Trichloroethane            | 120                  | Not Detected                 | 660                                  |              |
| Tetrachloroethene                | 120                  | Not Detected                 | 820                                  | Not Detected |
| 2-Hexanone                       | 480                  | Not Detected                 | 2000                                 | Not Detected |



# Client Sample ID: B8SS-2D-012417 Lab ID#: 1701428B-17A

# EPA METHOD TO-15 GC/MS

 File Name:
 14020611
 Date of Collection: 1/24/17 3:35:00 PM

 Dil. Factor:
 24.2
 Date of Analysis: 2/6/17 03:00 PM

|                           |                      | <del></del>   |                       |                   |
|---------------------------|----------------------|---------------|-----------------------|-------------------|
| Compound                  | Rpt. Limit<br>(ppbv) | Amount (ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
| Dibromochloromethane      | 120                  | Not Detected  | 1000                  | Not Detected      |
| 1,2-Dibromoethane (EDB)   | 120                  | Not Detected  | 930                   | Not Detected      |
| Chlorobenzene             | 120                  | Not Detected  | 560                   | Not Detected      |
| Ethyl Benzene             | 120                  | Not Detected  | 520                   | Not Detected      |
| m,p-Xylene                | 120                  | 64 J          | 520                   | 280 J             |
| o-Xylene                  | 120                  | Not Detected  | 520                   | Not Detected      |
| Styrene                   | 120                  | Not Detected  | 520                   | Not Detected      |
| Bromoform                 | 120                  | Not Detected  | 1200                  | Not Detected      |
| Cumene                    | 120                  | 120 J         | 590                   | 580 J             |
| 1,1,2,2-Tetrachloroethane | 120                  | Not Detected  | 830                   | Not Detected      |
| Propylbenzene             | 120                  | Not Detected  | 590                   | Not Detected      |
| 4-Ethyltoluene            | 120                  | Not Detected  | 590                   | Not Detected      |
| 1,3,5-Trimethylbenzene    | 120                  | Not Detected  | 590                   | Not Detected      |
| 1,2,4-Trimethylbenzene    | 120                  | Not Detected  | 590                   | Not Detected      |
| 1,3-Dichlorobenzene       | 120                  | Not Detected  | 730                   | Not Detected      |
| 1,4-Dichlorobenzene       | 120                  | Not Detected  | 730                   | Not Detected      |
| alpha-Chlorotoluene       | 120                  | Not Detected  | 630                   | Not Detected      |
| 1,2-Dichlorobenzene       | 120                  | Not Detected  | 730                   | Not Detected      |
| 1,2,4-Trichlorobenzene    | 480                  | Not Detected  | 3600                  | Not Detected      |
| Hexachlorobutadiene       | 480                  | Not Detected  | 5200                  | Not Detected      |
| Naphthalene               | 480                  | Not Detected  | 2500                  | Not Detected      |

### J = Estimated value.

Container Type: 1 Liter Summa Canister (100% Certified)

| Surrogates            | %Recovery | Limits |
|-----------------------|-----------|--------|
| 1,2-Dichloroethane-d4 | 95        | 70-130 |
| Toluene-d8            | 99        | 70-130 |
| 4-Bromofluorobenzene  | 100       | 70-130 |





# Client Sample ID: B18SS-1-012617 Lab ID#: 1701428B-18A

# EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:                       | a020224              |                                   | of Collection: 1/2 |                     |
|----------------------------------|----------------------|-----------------------------------|--------------------|---------------------|
| Dil. Factor:                     | 2.50                 | Date of Analysis: 2/3/17 01:54 AM |                    |                     |
| Commound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv)                  | Rpt. Limit         | Amount<br>(ug/m3)   |
| Compound                         |                      | ***                               | (ug/m3)            |                     |
| Freon 12                         | 1,2                  | 0.63 J                            | 6.2                | 3.1 J               |
| Freon 114                        | 1,2                  | Not Detected                      | 8.7                | Not Detected        |
| Chloromethane                    | 12                   | Not Detected                      | 26                 | Not Detected        |
| Vinyl Chloride                   | 1.2                  | Not Detected                      | 3.2                | Not Detected        |
| 1,3-Butadiene                    | 1.2                  | Not Detected                      | 2.8                | Not Detected        |
| Bromomethane                     | 12                   | Not Detected                      | 48                 | Not Detected        |
| Chloroethane                     | 5.0                  | Not Detected                      | 13                 | Not Detected        |
| Freon 11                         | 1.2                  | 1.4                               | 7.0                | 7.6                 |
| Ethanol                          | 5.0                  | 140                               | 9.4                | 270                 |
| Freon 113                        | 1.2                  | Not Detected                      | 9.6                | Not Detected        |
| 1,1-Dichloroethene               | 1.2                  | Not Detected                      | 5.0                | Not Detected        |
| Acetone                          | 12                   | 12 J                              | 30                 | 29 J                |
| 2-Propanol                       | 5.0                  | 180                               | 12                 | 460                 |
| Carbon Disulfide                 | 5.0                  | 1.2 J                             | 16                 | 3,7 J               |
| 3-Chloropropene                  | 5.0                  | Not Detected                      | 16                 | Not Detected        |
| Methylene Chloride               | 12                   | Not Detected                      | 43                 | Not Detected        |
| Methyl tert-butyl ether          | 5.0                  | Not Detected                      | 18                 | Not Detected        |
| trans-1,2-Dichloroethene         | 1.2                  | Not Detected                      | 5.0                | Not Detected        |
| Hexane                           | 1.2                  | Not Detected                      | 4.4                | Not Detected        |
| 1,1-Dichloroethane               | 1.2                  | Not Detected                      | 5.0                | Not Detected        |
| 2-Butanone (Methyl Ethyl Ketone) | 5.0                  | 2.1 J                             | 15                 | 6.2 J               |
| cis-1,2-Dichloroethene           | 1.2                  | Not Detected                      | 5.0                | Not Detected        |
| Tetrahydrofuran                  | 1.2                  | Not Detected                      | 3.7                | Not Detected        |
| Chloroform                       | 1.2                  | Not Detected                      | 6.1                | Not Detected        |
| 1,1,1-Trichloroethane            | 1.2                  | Not Detected                      | 6.8                | Not Detected        |
| Cyclohexane                      | 1.2                  | Not Detected                      | 4.3                | Not Detected        |
| Carbon Tetrachloride             | 1.2                  | Not Detected                      | 7.9                | Not Detected        |
| 2,2,4-Trimethylpentane           | 1.2                  | Not Detected                      | 5.8                | Not Detected        |
| Benzene                          | 1.2                  | 0.22 J                            | 4.0                | 0.71 J              |
| 1,2-Dichloroethane               | 1.2                  | Not Detected                      | 5.0                | Not Detected        |
| Heptane                          | 1.2                  | Not Detected                      | 5.1                | Not Detected        |
| Trichloroethene                  | 1.2                  | Not Detected                      | 6.7                | Not Detected        |
| 1,2-Dichloropropane              | 1.2                  | Not Detected                      | 5.8                | Not Detected        |
| 1,4-Dioxane                      | 5.0                  | Not Detected                      | 18                 | Not Detected        |
| Bromodichloromethane             | 1.2                  | Not Detected                      | 8.4                | Not Detected        |
| cis-1,3-Dichloropropene          | 1.2                  | Not Detected                      | 5.7                | Not Detected        |
| 4-Methyl-2-pentanone             | 1.2                  | Not Detected                      | 5.1                | Notablected         |
| Toluene                          | 1.2                  | 1.4                               | 4.7                | OF MARKETO          |
| trans-1,3-Dichloropropene        | 1.2                  | Not Detected                      | 5.7                | Not Detected        |
| 1,1,2-Trichloroethane            | 1.2                  | Not Detected                      | 6.8                | Note Disected       |
| Tetrachloroethene                | 1.2                  | Not Detected                      | 8.5                | N <b>Mente</b> cted |
| 2-Hexanone                       | 5.0                  | Not Detected                      | 20                 | Not Delase          |



# Client Sample ID: B18SS-1-012617 Lab ID#: 1701428B-18A

### **EPA METHOD TO-15 GC/MS FULL SCAN**

 File Name:
 a020224
 Date of Collection:
 1/26/17 5:30:00 PM

 Dil. Factor:
 2.50
 Date of Analysis:
 2/3/17 01:54 AM

| DII. Factor.              | 2.30                 | Date             | Of Analysis: 2/3/     | 7 U1:34 AIVI      |
|---------------------------|----------------------|------------------|-----------------------|-------------------|
| Compound                  | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
| Dibromochloromethane      | 1.2                  | Not Detected     | 11                    | Not Detected      |
| 1,2-Dibromoethane (EDB)   | 1,2                  | Not Detected     | 9.6                   | Not Detected      |
| Chlorobenzene             | 1,2                  | Not Detected     | 5.8                   | Not Detected      |
| Ethyl Benzene             | 1,2                  | 0,32 J           | 5.4                   | 1.4 J             |
| m,p-Xylene                | 1.2                  | 1,0 J            | 5.4                   | 4.6 J             |
| o-Xylene                  | 1.2                  | 0.50 J           | 5.4                   | 2.2 J             |
| Styrene                   | 1.2                  | Not Detected     | 5.3                   | Not Detected      |
| Bromoform                 | 1.2                  | Not Detected     | 13                    | Not Detected      |
| Cumene                    | 1.2                  | Not Detected     | 6.1                   | Not Detected      |
| 1,1,2,2-Tetrachloroethane | 1.2                  | Not Detected     | 8.6                   | Not Detected      |
| Propylbenzene             | 1,2                  | Not Detected     | 6.1                   | Not Detected      |
| 4-Ethyltoluene            | 1.2                  | 0,23 J           | 6.1                   | 1.1 J             |
| 1,3,5-Trimethylbenzene    | 1.2                  | Not Detected     | 6.1                   | Not Detected      |
| 1,2,4-Trimethylbenzene    | 1.2                  | 0.25 J           | 6.1                   | 1.2 J             |
| 1,3-Dichlorobenzene       | 1.2                  | 1.2 J            | 7.5                   | 7.2 J             |
| 1,4-Dichlorobenzene       | 1.2                  | Not Detected     | 7.5                   | Not Detected      |
| alpha-Chlorotoluene       | 1.2                  | Not Detected     | 6.5                   | Not Detected      |
| 1,2-Dichlorobenzene       | 1.2                  | Not Detected     | 7.5                   | Not Detected      |
| 1,2,4-Trichlorobenzene    | 5.0                  | Not Detected     | 37                    | Not Detected      |
| Hexachlorobutadiene       | 5.0                  | Not Detected     | 53                    | Not Detected      |
| Naphthalene               | 2.5                  | Not Detected     | 13                    | Not Detected      |

J = Estimated value.

Container Type: 1 Liter Summa Canister (100% Certified)

| Surrogates            | %Recovery | Limits |
|-----------------------|-----------|--------|
| Toluene-d8            | 100       | 70-130 |
| 1,2-Dichloroethane-d4 | 98        | 70-130 |
| 4-Bromofluorobenzene  | 106       | 70-130 |





# Client Sample ID: B18SS-1Dup-012617 Lab ID#: 1701428B-19A

### **EPA METHOD TO-15 GC/MS FULL SCAN**

| File Name:<br>Dil. Factor:       | a020311<br>2.46      |               | of Collection: 1/2 of Analysis: 2/3/1 |                   |
|----------------------------------|----------------------|---------------|---------------------------------------|-------------------|
| Compound                         | Rpt. Limit<br>(ppbv) | Amount (ppbv) | Rpt. Limit<br>(ug/m3)                 | Amount<br>(ug/m3) |
| Freon 12                         | 1.2                  | 0.50 J        | 6.1                                   | 2.5 J             |
| Freon 114                        | 1.2                  | Not Detected  | 8.6                                   | Not Detected      |
| Chloromethane                    | 12                   | Not Detected  | 25                                    | Not Detected      |
| Vinyl Chloride                   | 1.2                  | Not Detected  | 3.1                                   | Not Detected      |
| 1,3-Butadiene                    | 1.2                  | Not Detected  | 2.7                                   | Not Detected      |
| Bromomethane                     | 12                   | Not Detected  | 48                                    | Not Detected      |
| Chloroethane                     | 4.9                  | Not Detected  | 13                                    | Not Detected      |
| Freon 11                         | 1.2                  | 1.6           | 6.9                                   | 9.2               |
| Ethanol                          | 4.9                  | 240           | 9.3                                   | 460               |
| Freon 113                        | 1.2                  | Not Detected  | 9.4                                   | Not Detected      |
| 1,1-Dichloroethene               | 1.2                  | Not Detected  | 4.9                                   | Not Detected      |
| Acetone                          | 12                   | 20            | 29                                    | 47                |
| 2-Propanol                       | 4.9                  | 360           | 12                                    | 880               |
| Carbon Disulfide                 | 4.9                  | Not Detected  | 15                                    | Not Detected      |
| 3-Chloropropene                  | 4.9                  | Not Detected  | 15                                    | Not Detected      |
| Methylene Chloride               | 12                   | Not Detected  | 43                                    | Not Detected      |
| Methyl tert-butyl ether          | 4.9                  | Not Detected  | 18                                    | Not Detected      |
| trans-1,2-Dichloroethene         | 1.2                  | Not Detected  | 4.9                                   | Not Detected      |
| Hexane                           | 1.2                  | 0.37 J        | 4.3                                   | 1.3 J             |
| 1,1-Dichloroethane               | 1.2                  | Not Detected  | 5.0                                   | Not Detected      |
| 2-Butanone (Methyl Ethyl Ketone) | 4.9                  | 4.6 J         | 14                                    | 13 J              |
| cis-1,2-Dichloroethene           | 1.2                  | Not Detected  | 4.9                                   | Not Detected      |
| Tetrahydrofuran                  | 1.2                  | 0.15 J        | 3.6                                   | 0.45 J            |
| Chloroform                       | 1.2                  | Not Detected  | 6.0                                   | Not Detected      |
| 1,1,1-Trichloroethane            | 1.2                  | Not Detected  | 6.7                                   | Not Detected      |
| Cyclohexane                      | 1.2                  | Not Detected  | 4.2                                   | Not Detected      |
| Carbon Tetrachloride             | 1.2                  | Not Detected  | 7.7                                   | Not Detected      |
| 2,2,4-Trimethylpentane           | 1.2                  | 0.32 J        | 5.7                                   | 1.5 J             |
| Benzene                          | 1.2                  | 0.21 J        | 3.9                                   | 0.67 J            |
| 1,2-Dichloroethane               | 1.2                  | Not Detected  | 5.0                                   | Not Detected      |
| Heptane                          | 1.2                  | 0.48 J        | 5.0                                   | 2.0 J             |
| Trichloroethene                  | 1.2                  | Not Detected  | 6.6                                   | Not Detected      |
| 1,2-Dichloropropane              | 1.2                  | Not Detected  | 5.7                                   | Not Detected      |
| 1,4-Dioxane                      | 4.9                  | Not Detected  | 18                                    | Not Detected      |
| Bromodichloromethane             | 1.2                  | Not Detected  | 8.2                                   | Not Detected      |
| cis-1,3-Dichloropropene          | 1.2                  | Not Detected  | 5.6                                   | Not Detected      |
| 4-Methyl-2-pentanone             | 1.2                  | 1.9           | 5.0                                   | 7.8               |
| Toluene                          | 1.2                  | 2.2           | 4.6 NOCK                              | 8.1               |
| trans-1,3-Dichloropropene        | 1.2                  | 3.7           |                                       | 17                |
| 1,1,2-Trichloroethane            | 1.2                  | 0.58 J        | 6.7                                   | 1531J             |
| Tetrachloroethene                | 1.2                  | Not Detected  | laci in                               | Managered         |
| 2-Hexanone                       | 4.9                  | 0.54 J        | 20 Ménd                               | 2 35              |

CO LICENCIAS 062 of 0599



# Client Sample ID: B18SS-1Dup-012617 Lab ID#: 1701428B-19A

### EPA METHOD TO-15 GC/MS FULL SCAN

File Name: a020311 Date of Collection: 1/26/17 5:30:00 PM Dil. Factor: 2.46 Date of Analysis: 2/3/17 06:37 PM

| Compound                  | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|---------------------------|----------------------|------------------|-----------------------|-------------------|
| Dibromochloromethane      | 1.2                  | Not Detected     | 10                    | Not Detected      |
| 1,2-Dibromoethane (EDB)   | 1.2                  | Not Detected     | 9.4                   | Not Detected      |
| Chlorobenzene             | 1.2                  | Not Detected     | 5.7                   | Not Detected      |
| Ethyl Benzene             | 1.2                  | 0.47 J           | 5.3                   | 2.0 J             |
| m,p-Xylene                | 1.2                  | 1.8              | 5.3                   | 7.8               |
| o-Xylene                  | 1.2                  | 0.89 J           | 5.3                   | 3.9 J             |
| Styrene                   | 1.2                  | 0.15 J           | 5.2                   | 0.64 J            |
| Bromoform                 | 1.2                  | Not Detected     | 13                    | Not Detected      |
| Cumene                    | 1.2                  | 0.29 J           | 6.0                   | 1.4 J             |
| 1,1,2,2-Tetrachloroethane | 1.2                  | 0.070 J          | 8.4                   | 0.48 J            |
| Propylbenzene             | 1.2                  | 0.13 J           | 6.0                   | 0.66 J            |
| 4-Ethyltoluene            | 1.2                  | 0,62 J           | 6.0                   | 3.1 J             |
| 1,3,5-Trimethylbenzene    | 1.2                  | 0.15 J           | 6.0                   | 0.74 J            |
| 1,2,4-Trimethylbenzene    | 1.2                  | 0.55 J           | 6.0                   | 2.7 J             |
| 1,3-Dichlorobenzene       | 1.2                  | 2.5              | 7.4                   | 15                |
| 1,4-Dichlorobenzene       | 1.2                  | 2.4              | 7.4                   | 14                |
| alpha-Chlorotoluene       | 1.2                  | Not Detected     | 6.4                   | Not Detected      |
| 1,2-Dichlorobenzene       | 1.2                  | Not Detected     | 7.4                   | Not Detected      |
| 1,2,4-Trichlorobenzene    | 4.9                  | Not Detected     | 36                    | Not Detected      |
| Hexachlorobutadiene       | 4.9                  | Not Detected     | 52                    | Not Detected      |
| Naphthalene               | 2.5                  | Not Detected     | 13                    | Not Detected      |

J = Estimated value.

Container Type: 1 Liter Summa Canister (100% Certified)

|                       |           | Menion |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| Toluene-d8            | 102       | 70-130 |
| 1,2-Dichloroethane-d4 | 100       | 70-130 |
| 4-Bromofluorobenzene  | 102       | 70-130 |



Mathod

You'l

818IA-4-012117

86AA-012317

91800 9150

N1726 115311

1/23/17:1223

70-15 MeOH TO-10 MOGH CHY

23/17:1223 0260 : Ci/

121/19:1812

24.5"Hg

000

661A-20-012317 68IA-2-012317

B855-2-012417 8855 - 2D - C12417

B1855-1-012617

12373

24/17:1335

70-15 HEOH HOOH SI- OI

4HD CH7

30 "Hg

01 07 W W

29 "Hg

8 βH, ₽

TO-15, MOOH CHY

TO-15 MCOH, CHY

29 "Hg 29 "Hg

٥

29 "Hg

TO- 15 HOOH CHY

124/17:1535

111603

11170 1/11/10: 1730

Relinquished By: (Signature) Date/Time

EN 600 Shipper Name

Air Bill #

Opened By

Temp ©

Condition Jacc (

EA71

NIK

Yes No (None) Custody Seals

1701428

Work Order#

eri By: (Sthature) Date(Time

1-27-17

8

Received By: (Signature), Debut Dine

Notes:

FOREX Trucking No. 7782 8053 0772

TO-15, MEOH, CHY

30 光

ecoined By: (Signature) Date/Time

81855- 1 DUP-012617 818 55- 100P OHE

N1929

1/26/17: 1730

# Q

| TOXICS LTD.                                                                 |                  |                          |                                        |                   |                    | -                                                  |
|-----------------------------------------------------------------------------|------------------|--------------------------|----------------------------------------|-------------------|--------------------|----------------------------------------------------|
| Chain-of-Custody Record                                                     |                  |                          |                                        |                   |                    | Page of 2                                          |
| Contact Person Terry Taylor  Company Anderson Mulholland & Associates, Inc. | les, Inc.        |                          | Project Information:                   | Turn Aroun        | d Time:            | Around Time: Pressurized by:                       |
| Address 2700 Winchester, Suite 417City Purchase StateNYZip 10577            | chase State      | eNYZip 10577             | P.O. #                                 | X Normal          |                    |                                                    |
| Phone 914-251-0400, x 309 FAX                                               |                  |                          | Project #  Project Name BMS VI Invest. | Rush              | Š                  | Date:                                              |
| Collected By: (Signature) Din Koth                                          |                  |                          | Buildings 8,13, 5, 18, and 30          | S                 | Specify            | Press. Gas:<br>N2 He                               |
| Lab<br>I.D. Field Sample I.D.                                               | Canister<br>I.D. | Date & Time              | Analysis Requested                     | Canist<br>Initial | er Pressu<br>Final | Canister Pressure/Vacuum<br>al Final Receipt Final |
| #D 61870-2-01010                                                            | 2000             | 1/2.1.2.1                |                                        |                   |                    | (psi)                                              |
| B1870-4-014114                                                              | 0% ( 1.5         | 1-01 0181-41/18/1 0XC-18 | 21220 1/2/17:1510 TO-15 MOOH CHI       | 29 Hg             | e                  |                                                    |

### **EXECUTIVE NARRATIVE**

SDG No: 1701428B Laboratory: Eurofins, Folson, CA

Analysis: **TO-15** Number of Samples: **4** 

Location:

SUMMARY: Four (4) samples were analyzed for VOCs in ambient air following Compendium Method

TO-15. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: "Compendium Method TO-15. Determination of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters and Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), January, 1999"; USEPA Hazardous Waste Support Branch. Validating Air Samples. Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15, (SOP # HW-31. Revision #6. June, 2014). The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues: None Major: None Minor: None

Critical findings: None Major findings: None

Minor findings:

1. Initial and continuing calibrations meet method specific requirements except for the cases described in the Data Review Worksheet. For analytes not meeting the % difference continuing calibration criteria their results qualified as estimated (J or UJ) in affected

samples.

2. Several analytes detected at the method blank analyzed on 02/03/17.

- **3**. LCS/LCSD (Blank spike) analyzed in this data package. % recoveries and RPD within laboratory control limits except for the cases described in the Data Review Worksheet. Positive results for Freon 113 and Naphthalene qualified as estimated (J).
- **4.** Laboratory/field duplicate analyzed with this data package. RPD within laboratory and method performed criteria for analytes with concentration > 5 x SQL except for the cases described in the Data Review Worksheet. Results for acetone and benzene qualified (U) in affected samples as per Table 7. Blank actions for TO-15 Analyses.
- **5.** Results for ethanol and 2-propanol qualified as estimated (J) in samples 1701428B-18A/1701428B-19A due to RPD exceeding the method performance criteria.

COMMENTS: Results are valid and can be used for decision making purposes.

Reviewers Name: Rafael Infante

Chemist License 1888

Rafuel Infant

Signature:

Date: March 15, 2017

### TO-15 DATA SAMPLE SUMMARY

Sample ID: 1701428B-16A

Sample location: BMSMC, Humacao, PR

Sampling date: 24-Jan-17

Matrix: Air

| Analyte Name                     | Result | Units             | Dilution Factor | Lab Flag | Validation | Reportable |
|----------------------------------|--------|-------------------|-----------------|----------|------------|------------|
| Freon 12                         | 620    | ug/m³             | 24.9            | -        | U          | Yes        |
| Freon 114                        | 870    | ug/m³             | 24.9            | -        | U          | Yes        |
| Chloromethane                    | 1000   | ug/m³             | 24.9            | -        | U          | Yes        |
| Vinyl Chloride                   | 320    | ug/m³             | 24.9            | -        | U          | Yes        |
| 1,3-Butadiene                    | 280    | ug/m³             | 24.9            | -        | U          | Yes        |
| Bromomethane                     | 1900   | ug/m³             | 24.9            | -        | U          | Yes        |
| Chloroethane                     | 1300   | ug/m³             | 24.9            | -        | U          | Yes        |
| Freon 11                         | 700    | ug/m³             | 24.9            | -        | UJ         | Yes        |
| Ethanol                          | 940    | ug/m³             | 24.9            | -        | U          | Yes        |
| Freon 113                        | 950    | ug/m³             | 24.9            | -        | UJ         | Yes        |
| 1,1-Dichloroethene               | 490    | ug/m³             | 24.9            | -        | U          | Yes        |
| Acetone                          | 1200   | ug/m³             | 24.9            | -        | U          | Yes        |
| 2-Propanol                       | 1200   | ug/m³             | 24.9            | -        | U          | Yes        |
| Carbon Disulfide                 | 1600   | ug/m³             | 24.9            | -        | U          | Yes        |
| 3-Chloropropene                  | 1600   | ug/m³             | 24.9            | -        | U          | Yes        |
| Methylene Chloride               | 1700   | ug/m³             | 24.9            | -        | U          | Yes        |
| Methyl tert-butyl ether          | 920    | ug/m³             | 24.9            | -        | -          | Yes        |
| trans-1,2-Dichloroethene         | 490    | ug/m³             | 24.9            | -        | U          | Yes        |
| Hexane                           | 1300   | ug/m³             | 24.9            | -        | -          | Yes        |
| 1,1-Dichloroethane               | 500    | ug/m³             | 24.9            | -        | U          | Yes        |
| 2-Butanone (Methyl Ethyl Ketone) | 1500   | ug/m³             | 24.9            | -        | U          | Yes        |
| cis-1,2-Dichloroethene           | 490    | ug/m³             | 24.9            | -        | U          | Yes        |
| Tetrahydrofuran                  | 370    | ug/m³             | 24.9            | -        | U          | Yes        |
| Chloroform                       | 610    | ug/m³             | 24.9            | -        | U          | Yes        |
| 1,1,1-Trichloroethane            | 680    | ug/m³             | 24.9            | -        | U          | Yes        |
| Cyclohexane                      | 3600   | ug/m³             | 24.9            | -        | -          | Yes        |
| Carbon Tetrachloride             | 780    | ug/m <sup>3</sup> | 24.9            | -        | U          | Yes        |
| 2,2,4-Trimethylpentane           | 580    | ug/m³             | 24.9            | -        | U          | Yes        |
| Benzene                          | 400    | ug/m³             | 24.9            | -        | U          | Yes        |
| 1,2-Dichloroethane               | 500    | ug/m³             | 24.9            | -        | U          | Yes        |
| Heptane                          | 2000   | ug/m³             | 24.9            | -        | -          | Yes        |
| Trichloroethene                  | 670    | ug/m³             | 24.9            | -        | U          | Yes        |
| 1,2-Dichloropropane              | 580    | ug/m³             | 24.9            | -        | U          | Yes        |
| 1,4-Dioxane                      | 1800   | ug/m³             | 24.9            | -        | U          | Yes        |
| Bromodichloromethane             | 830    | ug/m³             | 24.9            | -        | U          | Yes        |
| cis-1,3-Dichloropropene          | 560    | ug/m³             | 24.9            | -        | U          | Yes        |

| 4-Methyl-2-pentanone      | 510  | ug/m³ | 24.9 | - | U | Yes |  |
|---------------------------|------|-------|------|---|---|-----|--|
| Toluene                   | 470  | ug/m³ | 24.9 | - | U | Yes |  |
| trans-1,3-Dichloropropene | 560  | ug/m³ | 24.9 | - | U | Yes |  |
| 1,1,2-Trichloroethane     | 680  | ug/m³ | 24.9 | - | U | Yes |  |
| Tetrachloroethene         | 840  | ug/m³ | 24.9 | - | U | Yes |  |
| 2-Hexanone                | 2000 | ug/m³ | 24.9 | - | U | Yes |  |
| Dibromochloromethane      | 1100 | ug/m³ | 24.9 | - | U | Yes |  |
| 1,2-Dibromoethane (EDB)   | 960  | ug/m³ | 24.9 | - | U | Yes |  |
| Chlorobenzene             | 570  | ug/m³ | 24.9 | - | U | Yes |  |
| Ethyl Benzene             | 540  | ug/m³ | 24.9 | - | U | Yes |  |
| m,p-Xylene                | 220  | ug/m³ | 24.9 | J | J | Yes |  |
| o-Xylene                  | 540  | ug/m³ | 24.9 | - | U | Yes |  |
| Styrene                   | 530  | ug/m³ | 24.9 | - | U | Yes |  |
| Bromoform                 | 1300 | ug/m³ | 24.9 | - | U | Yes |  |
| Cumene                    | 640  | ug/m³ | 24.9 | - | - | Yes |  |
| 1,1,2,2-Tetrachloroethane | 850  | ug/m³ | 24.9 | - | U | Yes |  |
| Propylbenzene             | 610  | ug/m³ | 24.9 | - | U | Yes |  |
| 4-Ethyltoluene            | 610  | ug/m³ | 24.9 | - | U | Yes |  |
| 1,3,5-Trimethylbenzene    | 610  | ug/m³ | 24.9 | - | U | Yes |  |
| 1,2,4-Trimethylbenzene    | 610  | ug/m³ | 24.9 | - | U | Yes |  |
| 1,3-Dichlorobenzene       | 750  | ug/m³ | 24.9 | - | U | Yes |  |
| 1,4-Dichlorobenzene       | 750  | ug/m³ | 24.9 | - | U | Yes |  |
| alpha-Chlorotoluene       | 640  | ug/m³ | 24.9 | - | U | Yes |  |
| 1,2-Dichlorobenzene       | 750  | ug/m³ | 24.9 | - | U | Yes |  |
| 1,2,4-Trichlorobenzene    | 3700 | ug/m³ | 24.9 | - | U | Yes |  |
| Hexachlorobutadiene       | 5300 | ug/m³ | 24.9 | - | U | Yes |  |
| Naphthalene               | 2600 | ug/m³ | 24.9 | - | U | Yes |  |
|                           |      |       |      |   |   |     |  |

Sample ID: 1701428B-17A

Sample location: BMSMC, Humacao, PR

Sampling date: 24-Jan-17

Matrix: Air

| Freon 12         600         ug/m³         24.2         -         U         Yes           Freon 114         840         ug/m³         24.2         -         U         Yes           Chloromethane         1000         ug/m³         24.2         -         U         Yes           Vinyl Chloride         310         ug/m³         24.2         -         U         Yes           1,3-Butadiene         270         ug/m³         24.2         -         U         Yes           Brommethane         1900         ug/m³         24.2         -         U         Yes           Bromatic         1900         ug/m³         24.2         -         U         Yes           Freon 11         680         ug/m³         24.2         -         U         Yes           Ethanol         910         ug/m³         24.2         -         U         Yes           Freon 113         930         ug/m³         24.2         -         U         Yes           Actone         1100         ug/m³         24.2         -         U         Yes           Actone         1100         ug/m³         24.2         -         U         Ye                                                                                                                                                       | Analyte Name                     | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------|-------|-----------------|----------|------------|------------|
| Chloromethane         1000         ug/m³         24.2         -         U         Yes           Vinyl Chloride         310         ug/m³         24.2         -         U         Yes           1,3-Butadiene         270         ug/m³         24.2         -         U         Yes           Bromomethane         1300         ug/m³         24.2         -         U         Yes           Chloroethane         1300         ug/m³         24.2         -         UJ         Yes           Freon 11         680         ug/m³         24.2         -         UJ         Yes           Ethanol         910         ug/m³         24.2         -         UJ         Yes           Freon 13         930         ug/m³         24.2         -         UJ         Yes           1,1-Dichloroethene         480         ug/m³         24.2         -         UJ         Yes           Acetone         1100         ug/m³         24.2         -         U         Yes           2-Propanol         1200         ug/m³         24.2         -         U         Yes           3-Chloropropene         1500         ug/m³         24.2         -                                                                                                                                             | Freon 12                         | 600    | ug/m³ | 24.2            | -        | U          | Yes        |
| Vinyl Chloride         310         ug/m³         24.2         -         U         Yes           1,3-Butadlene         270         ug/m³         24.2         -         U         Yes           Bromomethane         1900         ug/m³         24.2         -         U         Yes           Chloroethane         1300         ug/m³         24.2         -         UJ         Yes           Freon 11         680         ug/m³         24.2         -         UJ         Yes           Ethanol         910         ug/m³         24.2         -         UJ         Yes           Freon 113         930         ug/m³         24.2         -         UJ         Yes           Freon 113         930         ug/m³         24.2         -         UJ         Yes           1,1-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Acetone         1100         ug/m³         24.2         -         U         Yes           Carbon Disulfide         1500         ug/m³         24.2         -         U         Yes           Methylene Chloride         1700         ug/m³         24.2         - <td>Freon 114</td> <td>840</td> <td>ug/m³</td> <td>24.2</td> <td>-</td> <td>U</td> <td>Yes</td>                                        | Freon 114                        | 840    | ug/m³ | 24.2            | -        | U          | Yes        |
| 1,3-Butadiene         270         ug/m³         24.2         -         U         Yes           Bromomethane         1900         ug/m³         24.2         -         U         Yes           Chloroethane         1300         ug/m³         24.2         -         U         Yes           Freon 11         680         ug/m³         24.2         -         U         Yes           Ethanol         910         ug/m³         24.2         -         U         Yes           Freon 113         930         ug/m³         24.2         -         U         Yes           1,1-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Acetone         1100         ug/m³         24.2         -         U         Yes           Acetone         1100         ug/m³         24.2         -         U         Yes           2-Propanol         1200         ug/m³         24.2         -         U         Yes           2-Propanol         1200         ug/m³         24.2         -         U         Yes           2-Propanol         1200         ug/m³         24.2         -         U                                                                                                                                                     | Chloromethane                    | 1000   | ug/m³ | 24.2            | -        | U          | Yes        |
| Bromomethane         1900         ug/m³         24.2         -         U         Yes           Chloroethane         1300         ug/m³         24.2         -         U         Yes           Freon 11         680         ug/m³         24.2         -         UJ         Yes           Ethanol         910         ug/m³         24.2         -         UJ         Yes           Freon 113         930         ug/m³         24.2         -         UJ         Yes           1,1-Dichloroethene         480         ug/m³         24.2         -         UJ         Yes           Acetone         1100         ug/m³         24.2         -         U         Yes           Acetone         1500         ug/m³         24.2         -         U         Yes           2-Propanol         1200         ug/m³         24.2         -         U         Yes           3-Chloropene         1500         ug/m³         24.2         -         U         Yes           Methylene Chloride         1700         ug/m³         24.2         -         U         Yes           Methyl tert-butyl ether         900         ug/m³         24.2         - </td <td>Vinyl Chloride</td> <td>310</td> <td>ug/m³</td> <td>24.2</td> <td>-</td> <td>U</td> <td>Yes</td>                             | Vinyl Chloride                   | 310    | ug/m³ | 24.2            | -        | U          | Yes        |
| Chloroethane         1300         ug/m³         24.2         -         U         Yes           Freon 11         680         ug/m³         24.2         -         UJ         Yes           Ethanol         910         ug/m³         24.2         -         U         Yes           Freon 113         930         ug/m³         24.2         -         UJ         Yes           Acetone         1100         ug/m³         24.2         -         U         Yes           Acetone         1100         ug/m³         24.2         -         U         Yes           2-Propanol         1200         ug/m³         24.2         -         U         Yes           Carbon Disulfide         1500         ug/m³         24.2         -         U         Yes           Acthoropropene         1500         ug/m³         24.2         -         U         Yes           Methylene Chloride         1700         ug/m³         24.2         -         U         Yes           Methyl tert-butyl ether         900         ug/m³         24.2         -         U         Yes           Hexane         1300         ug/m³         24.2         -                                                                                                                                              | 1,3-Butadiene                    | 270    | ug/m³ | 24.2            | -        | U          | Yes        |
| Freon 11         680         ug/m³         24.2         -         UJ         Yes           Ethanol         910         ug/m³         24.2         -         U         Yes           Freon 113         930         ug/m³         24.2         -         UJ         Yes           1,1-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Acetone         1100         ug/m³         24.2         -         U         Yes           2-Propanol         1200         ug/m³         24.2         -         U         Yes           Carbon Disulfide         1500         ug/m³         24.2         -         U         Yes           3-Chloropropene         1500         ug/m³         24.2         -         U         Yes           Methylene Chloride         1700         ug/m³         24.2         -         U         Yes           Methylene Chloride         1700         ug/m³         24.2         -         U         Yes           Methyl tert-butyl ether         900         ug/m³         24.2         -         U         Yes           1,1-Dichloroethane         480         ug/m³         24.2                                                                                                                            | Bromomethane                     | 1900   | ug/m³ | 24.2            | -        | U          | Yes        |
| Ethanol         910         ug/m³         24.2         -         U         Yes           Freon 113         930         ug/m³         24.2         -         UJ         Yes           1,1-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Acetone         1100         ug/m³         24.2         -         U         Yes           2-Propanol         1200         ug/m³         24.2         -         U         Yes           2-Propanol         1500         ug/m³         24.2         -         U         Yes           3-Chloropropene         1500         ug/m³         24.2         -         U         Yes           Methylene Chloride         1700         ug/m³         24.2         -         U         Yes           Methyl tert-butyl ether         900         ug/m³         24.2         -         U         Yes           Methyl tert-butyl ether         900         ug/m³         24.2         -         U         Yes           Hexane         1300         ug/m³         24.2         -         U         Yes           1,1-Dichloroethane         480         ug/m³         24.2 <td>Chloroethane</td> <td>1300</td> <td>ug/m³</td> <td>24.2</td> <td>-</td> <td>U</td> <td>Yes</td>                            | Chloroethane                     | 1300   | ug/m³ | 24.2            | -        | U          | Yes        |
| Freon 113         930         ug/m³         24.2         -         UJ         Yes           1,1-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Acetone         1100         ug/m³         24.2         -         U         Yes           2-Propanol         1200         ug/m³         24.2         -         U         Yes           Garbon Disulfide         1500         ug/m³         24.2         -         U         Yes           3-Chloropropene         1500         ug/m³         24.2         -         U         Yes           Methyl tert-butyl ether         1900         ug/m³         24.2         -         U         Yes           Methyl tert-butyl ether         900         ug/m³         24.2         -         U         Yes           trans-1,2-Dichloroethene         480         ug/m³         24.2         -         U         Yes           1,1-Dichloroethane         490         ug/m³         24.2         -         U         Yes           2-Butanone (Methyl Ethyl Ketone)         1400         ug/m³         24.2         -         U         Yes           1,1-Dichloroethane         480                                                                                                          | Freon 11                         | 680    | ug/m³ | 24.2            | -        | UJ         | Yes        |
| 1,1-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Acetone         1100         ug/m³         24.2         -         U         Yes           2-Propanol         1200         ug/m³         24.2         -         U         Yes           3-Chloropropene         1500         ug/m³         24.2         -         U         Yes           Methylene Chloride         1700         ug/m³         24.2         -         U         Yes           Methyl tert-butyl ether         900         ug/m³         24.2         -         U         Yes           Metasane         1300         ug/m³         24.2         -         U         Yes           Hexane         1300         ug/m³         24.2         -         U         Yes           1,1-Dichloroethane         490         ug/m³         24.2         -         U         Yes           2-Butanone (Methyl Ethyl Ketone)         1400         ug/m³         24.2         -         U         Yes           1,1-Dichloroethane         480         ug/m³         24.2         -         U         Yes           Chloroform         590         ug/m³                                                                                                                          | Ethanol                          | 910    | ug/m³ | 24.2            | -        | U          | Yes        |
| Acetone         1100         ug/m³         24.2         -         U         Yes           2-Propanol         1200         ug/m³         24.2         -         U         Yes           Carbon Disulfide         1500         ug/m³         24.2         -         U         Yes           3-Chloropropene         1500         ug/m³         24.2         -         U         Yes           Methyl ene Chloride         1700         ug/m³         24.2         -         U         Yes           Methyl tert-butyl ether         900         ug/m³         24.2         -         U         Yes           trans-1,2-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Hexane         1300         ug/m³         24.2         -         U         Yes           1,1-Dichloroethane         490         ug/m³         24.2         -         U         Yes           2-Butanone (Methyl Ethyl Ketone)         1400         ug/m³         24.2         -         U         Yes           1-Lichloroethene         480         ug/m³         24.2         -         U         Yes           1,1,1-Trichloroethane         660                                                                                                                | Freon 113                        | 930    | ug/m³ | 24.2            | -        | UJ         | Yes        |
| 2-Propanol         1200         ug/m³         24.2         -         U         Yes           Carbon Disulfide         1500         ug/m³         24.2         -         U         Yes           3-Chloropropene         1500         ug/m³         24.2         -         U         Yes           Methyl tercholroide         1700         ug/m³         24.2         -         U         Yes           Methyl tert-butyl ether         900         ug/m³         24.2         -         U         Yes           trans-1,2-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Hexane         1300         ug/m³         24.2         -         U         Yes           1,1-Dichloroethane         490         ug/m³         24.2         -         U         Yes           2-Butanone (Methyl Ethyl Ketone)         1400         ug/m³         24.2         -         U         Yes           2-Butanone (Methyl Ethyl Ketone)         1400         ug/m³         24.2         -         U         Yes           Tetrahydrofuran         360         ug/m³         24.2         -         U         Yes           Chloroform                                                                                                               | 1,1-Dichloroethene               | 480    | ug/m³ | 24.2            | -        | U          | Yes        |
| Carbon Disulfide         1500         ug/m³         24.2         -         U         Yes           3-Chloropropene         1500         ug/m³         24.2         -         U         Yes           Methylene Chloride         1700         ug/m³         24.2         -         U         Yes           Methyl tert-butyl ether         900         ug/m³         24.2         -         U         Yes           trans-1,2-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Hexane         1300         ug/m³         24.2         -         U         Yes           1,1-Dichloroethane         490         ug/m³         24.2         -         U         Yes           2-Butanone (Methyl Ethyl Ketone)         1400         ug/m³         24.2         -         U         Yes           cis-1,2-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Chloroform         590         ug/m³         24.2         -         U         Yes           Chloroforme         590         ug/m³         24.2         -         U         Yes           Cyclohexane         3400                                                                                                                  | Acetone                          | 1100   | ug/m³ | 24.2            | -        | U          | Yes        |
| 3-Chloropropene         1500         ug/m³         24.2         -         U         Yes           Methylene Chloride         1700         ug/m³         24.2         -         U         Yes           Methyl tert-butyl ether         900         ug/m³         24.2         -         -         Yes           trans-1,2-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Hexane         1300         ug/m³         24.2         -         U         Yes           1,1-Dichloroethane         490         ug/m³         24.2         -         U         Yes           2-Butanone (Methyl Ethyl Ketone)         1400         ug/m³         24.2         -         U         Yes           2-Butanone (Methyl Ethyl Ketone)         1400         ug/m³         24.2         -         U         Yes           2-Butanone (Methyl Ethyl Ketone)         1400         ug/m³         24.2         -         U         Yes           Cis-1,-Dichloroethane         480         ug/m³         24.2         -         U         Yes           Chloroform         590         ug/m³         24.2         -         U         Yes           Cycl                                                                                                 | 2-Propanol                       | 1200   | ug/m³ | 24.2            | -        | U          | Yes        |
| Methylene Chloride         1700         ug/m³         24.2         -         U         Yes           Methyl tert-butyl ether         900         ug/m³         24.2         -         -         Yes           trans-1,2-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Hexane         1300         ug/m³         24.2         -         U         Yes           1,1-Dichloroethane         490         ug/m³         24.2         -         U         Yes           2-Butanone (Methyl Ethyl Ketone)         1400         ug/m³         24.2         -         U         Yes           cis-1,2-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Tetrahydrofuran         360         ug/m³         24.2         -         U         Yes           Chloroform         590         ug/m³         24.2         -         U         Yes           Cyclohexane         3400         ug/m³         24.2         -         U         Yes           Cyclohexane         760         ug/m³         24.2         -         U         Yes           Benzene         390         u                                                                                                                   | Carbon Disulfide                 | 1500   | ug/m³ | 24.2            | -        | U          | Yes        |
| Methyl tert-butyl ether         900         ug/m³         24.2         -         -         Yes           trans-1,2-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Hexane         1300         ug/m³         24.2         -         -         Yes           1,1-Dichloroethane         490         ug/m³         24.2         -         U         Yes           2-Butanone (Methyl Ethyl Ketone)         1400         ug/m³         24.2         -         U         Yes           cis-1,2-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Tetrahydrofuran         360         ug/m³         24.2         -         U         Yes           Chloroform         590         ug/m³         24.2         -         U         Yes           1,1,1-Trichloroethane         660         ug/m³         24.2         -         U         Yes           Cyclohexane         3400         ug/m³         24.2         -         U         Yes           Cyclohexane         760         ug/m³         24.2         -         U         Yes           Benzene         390 <td< td=""><td>3-Chloropropene</td><td>1500</td><td>ug/m³</td><td>24.2</td><td>-</td><td>U</td><td>Yes</td></td<>         | 3-Chloropropene                  | 1500   | ug/m³ | 24.2            | -        | U          | Yes        |
| trans-1,2-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Hexane         1300         ug/m³         24.2         -         -         Yes           1,1-Dichloroethane         490         ug/m³         24.2         -         U         Yes           2-Butanone (Methyl Ethyl Ketone)         1400         ug/m³         24.2         -         U         Yes           cis-1,2-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Tetrahydrofuran         360         ug/m³         24.2         -         U         Yes           Chloroform         590         ug/m³         24.2         -         U         Yes           Chloroform         590         ug/m³         24.2         -         U         Yes           Cyclohexane         3400         ug/m³         24.2         -         U         Yes           Cyclohexane         760         ug/m³         24.2         -         U         Yes           Carbon Tetrachloride         760         ug/m³         24.2         J         J         Yes           Benzene         390         ug/m³                                                                                                                           | Methylene Chloride               | 1700   | ug/m³ | 24.2            | -        | U          | Yes        |
| Hexane         1300         ug/m³         24.2         -         -         Yes           1,1-Dichloroethane         490         ug/m³         24.2         -         U         Yes           2-Butanone (Methyl Ethyl Ketone)         1400         ug/m³         24.2         -         U         Yes           cis-1,2-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Tetrahydrofuran         360         ug/m³         24.2         -         U         Yes           Chloroform         590         ug/m³         24.2         -         U         Yes           Chloroform         590         ug/m³         24.2         -         U         Yes           Cyclohexane         660         ug/m³         24.2         -         U         Yes           Cyclohexane         3400         ug/m³         24.2         -         U         Yes           Cyclohexane         760         ug/m³         24.2         -         U         Yes           Ly2-A-Trimethylpentane         470         ug/m³         24.2         J         J         Yes           Ly2-Dichloroethane         490         ug/m³                                                                                                                           | Methyl tert-butyl ether          | 900    | ug/m³ | 24.2            | -        | -          | Yes        |
| 1,1-Dichloroethane       490       ug/m³       24.2       -       U       Yes         2-Butanone (Methyl Ethyl Ketone)       1400       ug/m³       24.2       -       U       Yes         cis-1,2-Dichloroethene       480       ug/m³       24.2       -       U       Yes         Tetrahydrofuran       360       ug/m³       24.2       -       U       Yes         Chloroform       590       ug/m³       24.2       -       U       Yes         1,1,1-Trichloroethane       660       ug/m³       24.2       -       U       Yes         Cyclohexane       3400       ug/m³       24.2       -       U       Yes         Carbon Tetrachloride       760       ug/m³       24.2       -       U       Yes         2,2,4-Trimethylpentane       470       ug/m³       24.2       J       J       Yes         Benzene       390       ug/m³       24.2       -       U       Yes         1,2-Dichloroethane       490       ug/m³       24.2       -       U       Yes         Trichloroethene       650       ug/m³       24.2       -       U       Yes         1,2-Dichloropropane                                                                                                                                                                                                | trans-1,2-Dichloroethene         | 480    | ug/m³ | 24.2            | -        | U          | Yes        |
| 2-Butanone (Methyl Ethyl Ketone)       1400       ug/m³       24.2       -       U       Yes         cis-1,2-Dichloroethene       480       ug/m³       24.2       -       U       Yes         Tetrahydrofuran       360       ug/m³       24.2       -       U       Yes         Chloroform       590       ug/m³       24.2       -       U       Yes         1,1,1-Trichloroethane       660       ug/m³       24.2       -       U       Yes         Cyclohexane       3400       ug/m³       24.2       -       U       Yes         Carbon Tetrachloride       760       ug/m³       24.2       -       U       Yes         2,2,4-Trimethylpentane       470       ug/m³       24.2       J       J       Yes         Benzene       390       ug/m³       24.2       J       U       Yes         1,2-Dichloroethane       490       ug/m³       24.2       -       U       Yes         Heptane       1800       ug/m³       24.2       -       U       Yes         1,2-Dichloropropane       560       ug/m³       24.2       -       U       Yes         1,4-Dioxane       1700<                                                                                                                                                                                                  | Hexane                           | 1300   | ug/m³ | 24.2            | -        | -          | Yes        |
| cis-1,2-Dichloroethene         480         ug/m³         24.2         -         U         Yes           Tetrahydrofuran         360         ug/m³         24.2         -         U         Yes           Chloroform         590         ug/m³         24.2         -         U         Yes           1,1,1-Trichloroethane         660         ug/m³         24.2         -         U         Yes           Cyclohexane         3400         ug/m³         24.2         -         U         Yes           Carbon Tetrachloride         760         ug/m³         24.2         -         U         Yes           Carbon Tetrachloride         760         ug/m³         24.2         -         U         Yes           2,2,4-Trimethylpentane         470         ug/m³         24.2         J         J         Yes           Benzene         390         ug/m³         24.2         -         U         Yes           1,2-Dichloroethane         490         ug/m³         24.2         -         U         Yes           Trichloroethene         650         ug/m³         24.2         -         U         Yes           1,4-Dioxane         1700         ug/m³ <td>1,1-Dichloroethane</td> <td>490</td> <td>ug/m³</td> <td>24.2</td> <td>-</td> <td>U</td> <td>Yes</td>             | 1,1-Dichloroethane               | 490    | ug/m³ | 24.2            | -        | U          | Yes        |
| Tetrahydrofuran         360         ug/m³         24.2         -         U         Yes           Chloroform         590         ug/m³         24.2         -         U         Yes           1,1,1-Trichloroethane         660         ug/m³         24.2         -         U         Yes           Cyclohexane         3400         ug/m³         24.2         -         -         Yes           Carbon Tetrachloride         760         ug/m³         24.2         -         U         Yes           2,2,4-Trimethylpentane         470         ug/m³         24.2         J         J         Yes           Benzene         390         ug/m³         24.2         -         U         Yes           1,2-Dichloroethane         490         ug/m³         24.2         -         U         Yes           Heptane         1800         ug/m³         24.2         -         U         Yes           Trichloroethene         650         ug/m³         24.2         -         U         Yes           1,4-Dioxane         1700         ug/m³         24.2         -         U         Yes           Bromodichloromethane         810         ug/m³ <td< td=""><td>2-Butanone (Methyl Ethyl Ketone)</td><td>1400</td><td>ug/m³</td><td>24.2</td><td>-</td><td>U</td><td>Yes</td></td<> | 2-Butanone (Methyl Ethyl Ketone) | 1400   | ug/m³ | 24.2            | -        | U          | Yes        |
| Chloroform         590         ug/m³         24.2         -         U         Yes           1,1,1-Trichloroethane         660         ug/m³         24.2         -         U         Yes           Cyclohexane         3400         ug/m³         24.2         -         -         Yes           Carbon Tetrachloride         760         ug/m³         24.2         -         U         Yes           2,2,4-Trimethylpentane         470         ug/m³         24.2         J         J         Yes           Benzene         390         ug/m³         24.2         -         U         Yes           1,2-Dichloroethane         490         ug/m³         24.2         -         U         Yes           Heptane         1800         ug/m³         24.2         -         U         Yes           Trichloroethene         650         ug/m³         24.2         -         U         Yes           1,2-Dichloropropane         560         ug/m³         24.2         -         U         Yes           1,4-Dioxane         1700         ug/m³         24.2         -         U         Yes           Bromodichloromethane         810         ug/m³                                                                                                                                | cis-1,2-Dichloroethene           | 480    | ug/m³ | 24.2            | -        | U          | Yes        |
| 1,1,1-Trichloroethane       660       ug/m³       24.2       -       U       Yes         Cyclohexane       3400       ug/m³       24.2       -       -       Yes         Carbon Tetrachloride       760       ug/m³       24.2       -       U       Yes         2,2,4-Trimethylpentane       470       ug/m³       24.2       J       J       Yes         Benzene       390       ug/m³       24.2       -       U       Yes         1,2-Dichloroethane       490       ug/m³       24.2       -       U       Yes         Heptane       1800       ug/m³       24.2       -       U       Yes         Trichloroethene       650       ug/m³       24.2       -       U       Yes         1,2-Dichloropropane       560       ug/m³       24.2       -       U       Yes         1,4-Dioxane       1700       ug/m³       24.2       -       U       Yes         Bromodichloromethane       810       ug/m³       24.2       -       U       Yes         cis-1,3-Dichloropropene       550       ug/m³       24.2       -       U       Yes         4-Methyl-2-pentanone       500 <td>Tetrahydrofuran</td> <td>360</td> <td>ug/m³</td> <td>24.2</td> <td>-</td> <td>U</td> <td>Yes</td>                                                                                               | Tetrahydrofuran                  | 360    | ug/m³ | 24.2            | -        | U          | Yes        |
| Cyclohexane         3400         ug/m³         24.2         -         -         Yes           Carbon Tetrachloride         760         ug/m³         24.2         -         U         Yes           2,2,4-Trimethylpentane         470         ug/m³         24.2         J         J         Yes           Benzene         390         ug/m³         24.2         -         U         Yes           1,2-Dichloroethane         490         ug/m³         24.2         -         U         Yes           Heptane         1800         ug/m³         24.2         -         U         Yes           Trichloroethene         650         ug/m³         24.2         -         U         Yes           1,2-Dichloropropane         560         ug/m³         24.2         -         U         Yes           1,4-Dioxane         1700         ug/m³         24.2         -         U         Yes           Bromodichloromethane         810         ug/m³         24.2         -         U         Yes           cis-1,3-Dichloropropene         550         ug/m³         24.2         -         U         Yes           4-Methyl-2-pentanone         500         ug/m³<                                                                                                                   | Chloroform                       | 590    | ug/m³ | 24.2            | -        | U          | Yes        |
| Carbon Tetrachloride         760         ug/m³         24.2         -         U         Yes           2,2,4-Trimethylpentane         470         ug/m³         24.2         J         J         Yes           Benzene         390         ug/m³         24.2         -         U         Yes           1,2-Dichloroethane         490         ug/m³         24.2         -         U         Yes           Heptane         1800         ug/m³         24.2         -         U         Yes           Trichloroethene         650         ug/m³         24.2         -         U         Yes           1,2-Dichloropropane         560         ug/m³         24.2         -         U         Yes           1,4-Dioxane         1700         ug/m³         24.2         -         U         Yes           Bromodichloromethane         810         ug/m³         24.2         -         U         Yes           cis-1,3-Dichloropropene         550         ug/m³         24.2         -         U         Yes           4-Methyl-2-pentanone         500         ug/m³         24.2         -         U         Yes                                                                                                                                                                     | 1,1,1-Trichloroethane            | 660    | ug/m³ | 24.2            | -        | U          | Yes        |
| 2,2,4-Trimethylpentane       470       ug/m³       24.2       J       J       Yes         Benzene       390       ug/m³       24.2       -       U       Yes         1,2-Dichloroethane       490       ug/m³       24.2       -       U       Yes         Heptane       1800       ug/m³       24.2       -       U       Yes         Trichloroethene       650       ug/m³       24.2       -       U       Yes         1,2-Dichloropropane       560       ug/m³       24.2       -       U       Yes         1,4-Dioxane       1700       ug/m³       24.2       -       U       Yes         Bromodichloromethane       810       ug/m³       24.2       -       U       Yes         cis-1,3-Dichloropropene       550       ug/m³       24.2       -       U       Yes         4-Methyl-2-pentanone       500       ug/m³       24.2       -       U       Yes                                                                                                                                                                                                                                                                                                                                                                                                                     | Cyclohexane                      | 3400   | ug/m³ | 24.2            | -        | -          | Yes        |
| Benzene       390       ug/m³       24.2       -       U       Yes         1,2-Dichloroethane       490       ug/m³       24.2       -       U       Yes         Heptane       1800       ug/m³       24.2       -       -       Yes         Trichloroethene       650       ug/m³       24.2       -       U       Yes         1,2-Dichloropropane       560       ug/m³       24.2       -       U       Yes         1,4-Dioxane       1700       ug/m³       24.2       -       U       Yes         Bromodichloromethane       810       ug/m³       24.2       -       U       Yes         cis-1,3-Dichloropropene       550       ug/m³       24.2       -       U       Yes         4-Methyl-2-pentanone       500       ug/m³       24.2       -       U       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Carbon Tetrachloride             | 760    | ug/m³ | 24.2            | -        | U          | Yes        |
| 1,2-Dichloroethane       490       ug/m³       24.2       -       U       Yes         Heptane       1800       ug/m³       24.2       -       -       Yes         Trichloroethene       650       ug/m³       24.2       -       U       Yes         1,2-Dichloropropane       560       ug/m³       24.2       -       U       Yes         1,4-Dioxane       1700       ug/m³       24.2       -       U       Yes         Bromodichloromethane       810       ug/m³       24.2       -       U       Yes         cis-1,3-Dichloropropene       550       ug/m³       24.2       -       U       Yes         4-Methyl-2-pentanone       500       ug/m³       24.2       -       U       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,2,4-Trimethylpentane           | 470    | ug/m³ | 24.2            | J        | J          | Yes        |
| 1,2-Dichloroethane       490       ug/m³       24.2       -       U       Yes         Heptane       1800       ug/m³       24.2       -       -       Yes         Trichloroethene       650       ug/m³       24.2       -       U       Yes         1,2-Dichloropropane       560       ug/m³       24.2       -       U       Yes         1,4-Dioxane       1700       ug/m³       24.2       -       U       Yes         Bromodichloromethane       810       ug/m³       24.2       -       U       Yes         cis-1,3-Dichloropropene       550       ug/m³       24.2       -       U       Yes         4-Methyl-2-pentanone       500       ug/m³       24.2       -       U       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Benzene                          | 390    | ug/m³ | 24.2            | -        | U          | Yes        |
| Trichloroethene         650         ug/m³         24.2         -         U         Yes           1,2-Dichloropropane         560         ug/m³         24.2         -         U         Yes           1,4-Dioxane         1700         ug/m³         24.2         -         U         Yes           Bromodichloromethane         810         ug/m³         24.2         -         U         Yes           cis-1,3-Dichloropropene         550         ug/m³         24.2         -         U         Yes           4-Methyl-2-pentanone         500         ug/m³         24.2         -         U         Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2-Dichloroethane               | 490    |       | 24.2            | -        | U          | Yes        |
| 1,2-Dichloropropane       560       ug/m³       24.2       -       U       Yes         1,4-Dioxane       1700       ug/m³       24.2       -       U       Yes         Bromodichloromethane       810       ug/m³       24.2       -       U       Yes         cis-1,3-Dichloropropene       550       ug/m³       24.2       -       U       Yes         4-Methyl-2-pentanone       500       ug/m³       24.2       -       U       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Heptane                          | 1800   | ug/m³ | 24.2            | -        | -          | Yes        |
| 1,4-Dioxane       1700       ug/m³       24.2       -       U       Yes         Bromodichloromethane       810       ug/m³       24.2       -       U       Yes         cis-1,3-Dichloropropene       550       ug/m³       24.2       -       U       Yes         4-Methyl-2-pentanone       500       ug/m³       24.2       -       U       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Trichloroethene                  | 650    | ug/m³ | 24.2            | -        | U          | Yes        |
| Bromodichloromethane 810 ug/m³ 24.2 - U Yes cis-1,3-Dichloropropene 550 ug/m³ 24.2 - U Yes 4-Methyl-2-pentanone 500 ug/m³ 24.2 - U Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,2-Dichloropropane              | 560    | ug/m³ | 24.2            | -        | U          | Yes        |
| cis-1,3-Dichloropropene 550 ug/m³ 24.2 - U Yes<br>4-Methyl-2-pentanone 500 ug/m³ 24.2 - U Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,4-Dioxane                      | 1700   | ug/m³ | 24.2            | -        | U          | Yes        |
| 4-Methyl-2-pentanone 500 ug/m³ 24.2 - U Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bromodichloromethane             | 810    | ug/m³ | 24.2            | -        | U          | Yes        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cis-1,3-Dichloropropene          | 550    | ug/m³ | 24.2            | -        | U          | Yes        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·                                | 500    |       | 24.2            | -        | U          | Yes        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Toluene                          | 81     | ug/m³ | 24.2            | J        | J          | Yes        |

| 550  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 660  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 820  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2000 | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1000 | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 930  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 560  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 520  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 280  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 520  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 520  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1200 | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 580  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 830  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 590  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 590  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 590  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 590  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 730  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 730  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 630  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 730  | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3600 | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5200 | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2500 | ug/m³                                                                                                                                                       | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 660<br>820<br>2000<br>1000<br>930<br>560<br>520<br>280<br>520<br>1200<br>580<br>830<br>590<br>590<br>590<br>590<br>730<br>730<br>630<br>730<br>3600<br>5200 | 660       ug/m³         820       ug/m³         2000       ug/m³         1000       ug/m³         930       ug/m³         560       ug/m³         520       ug/m³         520       ug/m³         520       ug/m³         520       ug/m³         520       ug/m³         580       ug/m³         590       ug/m³         590       ug/m³         590       ug/m³         730       ug/m³         730       ug/m³         730       ug/m³         730       ug/m³         730       ug/m³         5200       ug/m³ | 660       ug/m³       24.2         820       ug/m³       24.2         2000       ug/m³       24.2         1000       ug/m³       24.2         930       ug/m³       24.2         560       ug/m³       24.2         520       ug/m³       24.2         280       ug/m³       24.2         520       ug/m³       24.2         520       ug/m³       24.2         520       ug/m³       24.2         580       ug/m³       24.2         580       ug/m³       24.2         590       ug/m³       24.2         590       ug/m³       24.2         590       ug/m³       24.2         730       ug/m³ <t< td=""><td>660       ug/m³       24.2       -         820       ug/m³       24.2       -         2000       ug/m³       24.2       -         1000       ug/m³       24.2       -         930       ug/m³       24.2       -         560       ug/m³       24.2       -         520       ug/m³       24.2       -         280       ug/m³       24.2       J         520       ug/m³       24.2       -         520       ug/m³       24.2       -         520       ug/m³       24.2       -         580       ug/m³       24.2       -         580       ug/m³       24.2       -         590       ug/m³       24.2       -         590       ug/m³       24.2       -         590       ug/m³       24.2       -         730       ug/m³       24.2       -         &lt;</td><td>660       ug/m³       24.2       -       U         820       ug/m³       24.2       -       U         2000       ug/m³       24.2       -       U         1000       ug/m³       24.2       -       U         930       ug/m³       24.2       -       U         560       ug/m³       24.2       -       U         520       ug/m³       24.2       -       U         280       ug/m³       24.2       -       U         520       ug/m³       24.2       -       U         520       ug/m³       24.2       -       U         520       ug/m³       24.2       -       U         580       ug/m³       24.2       -       U         580       ug/m³       24.2       -       U         590       ug/m³       24.2       -       U         590       ug/m³       24.2       -       U         730       ug/m³       24.2       -       U         730       ug/m³       24.2       -       U         730       ug/m³       24.2       -       U     </td></t<> | 660       ug/m³       24.2       -         820       ug/m³       24.2       -         2000       ug/m³       24.2       -         1000       ug/m³       24.2       -         930       ug/m³       24.2       -         560       ug/m³       24.2       -         520       ug/m³       24.2       -         280       ug/m³       24.2       J         520       ug/m³       24.2       -         520       ug/m³       24.2       -         520       ug/m³       24.2       -         580       ug/m³       24.2       -         580       ug/m³       24.2       -         590       ug/m³       24.2       -         590       ug/m³       24.2       -         590       ug/m³       24.2       -         730       ug/m³       24.2       -         < | 660       ug/m³       24.2       -       U         820       ug/m³       24.2       -       U         2000       ug/m³       24.2       -       U         1000       ug/m³       24.2       -       U         930       ug/m³       24.2       -       U         560       ug/m³       24.2       -       U         520       ug/m³       24.2       -       U         280       ug/m³       24.2       -       U         520       ug/m³       24.2       -       U         520       ug/m³       24.2       -       U         520       ug/m³       24.2       -       U         580       ug/m³       24.2       -       U         580       ug/m³       24.2       -       U         590       ug/m³       24.2       -       U         590       ug/m³       24.2       -       U         730       ug/m³       24.2       -       U         730       ug/m³       24.2       -       U         730       ug/m³       24.2       -       U |

Sample ID: 1701428B-18A

Sample location: BMSMC, Humacao, PR

Sampling date: 26-Jan-17

Matrix: Air

| Analyte Name                     | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|----------------------------------|--------|-------|-----------------|----------|------------|------------|
| Freon 12                         | 3.1    | ug/m³ | 2.50            | J        | J          | Yes        |
| Freon 114                        | 8.7    | ug/m³ | 2.50            | -        | U          | Yes        |
| Chloromethane                    | 26     | ug/m³ | 2.50            | -        | U          | Yes        |
| Vinyl Chloride                   | 3.2    | ug/m³ | 2.50            | -        | U          | Yes        |
| 1,3-Butadiene                    | 2.8    | ug/m³ | 2.50            | -        | U          | Yes        |
| Bromomethane                     | 48     | ug/m³ | 2.50            | -        | U          | Yes        |
| Chloroethane                     | 13     | ug/m³ | 2.50            | -        | U          | Yes        |
| Freon 11                         | 7.6    | ug/m³ | 2.50            | -        | -          | Yes        |
| Ethanol                          | 270    | ug/m³ | 2.50            | -        | J          | Yes        |
| Freon 113                        | 9.6    | ug/m³ | 2.50            | -        | U          | Yes        |
| 1,1-Dichloroethene               | 5.0    | ug/m³ | 2.50            | -        | U          | Yes        |
| Acetone                          | 30     | ug/m³ | 2.50            | J        | U          | Yes        |
| 2-Propanol                       | 460    | ug/m³ | 2.50            | -        | J          | Yes        |
| Carbon Disulfide                 | 3.7    | ug/m³ | 2.50            | J        | J          | Yes        |
| 3-Chloropropene                  | 16.0   | ug/m³ | 2.50            | -        | U          | Yes        |
| Methylene Chloride               | 43     | ug/m³ | 2.50            | -        | U          | Yes        |
| Methyl tert-butyl ether          | 18     | ug/m³ | 2.50            | -        | U          | Yes        |
| trans-1,2-Dichloroethene         | 5.0    | ug/m³ | 2.50            | -        | U          | Yes        |
| Hexane                           | 4.4    | ug/m³ | 2.50            | -        | U          | Yes        |
| 1,1-Dichloroethane               | 5.0    | ug/m³ | 2.50            | -        | U          | Yes        |
| 2-Butanone (Methyl Ethyl Ketone) | 6.2    | ug/m³ | 2.50            | J        | J          | Yes        |
| cis-1,2-Dichloroethene           | 5.0    | ug/m³ | 2.50            | -        | U          | Yes        |
| Tetrahydrofuran                  | 3.7    | ug/m³ | 2.50            | -        | U          | Yes        |
| Chloroform                       | 6.10   | ug/m³ | 2.50            | -        | U          | Yes        |
| 1,1,1-Trichloroethane            | 6.8    | ug/m³ | 2.50            | -        | U          | Yes        |
| Cyclohexane                      | 4.3    | ug/m³ | 2.50            | -        | U          | Yes        |
| Carbon Tetrachloride             | 7.9    | ug/m³ | 2.50            | J        | J          | Yes        |
| 2,2,4-Trimethylpentane           | 7.8    | ug/m³ | 2.50            | -        | U          | Yes        |
| Benzene                          | 4.0    | ug/m³ | 2.50            | J        | U          | Yes        |
| 1,2-Dichloroethane               | 5.0    | ug/m³ | 2.50            | -        | U          | Yes        |
| Heptane                          | 5.10   | ug/m³ | 2.50            | -        | U          | Yes        |
| Trichloroethene                  | 6.7    | ug/m³ | 2.50            | -        | U          | Yes        |
| 1,2-Dichloropropane              | 5.8    | ug/m³ | 2.50            | -        | U          | Yes        |
| 1,4-Dioxane                      | 18     | ug/m³ | 2.50            | -        | U          | Yes        |
| Bromodichloromethane             | 8.4    | ug/m³ | 2.50            | -        | U          | Yes        |
| cis-1,3-Dichloropropene          | 5.7    | ug/m³ | 2.50            | -        | U          | Yes        |
| 4-Methyl-2-pentanone             | 5.1    | ug/m³ | 2.50            | -        | U          | Yes        |
| Toluene                          | 5.4    | ug/m³ | 2.50            | -        | -          | Yes        |

| trans-1,3-Dichloropropene | 5.7 | ug/m³ | 2.50 | - | U | Yes |
|---------------------------|-----|-------|------|---|---|-----|
| 1,1,2-Trichloroethane     | 6.8 | ug/m³ | 2.50 | - | U | Yes |
| Tetrachloroethene         | 8.5 | ug/m³ | 2.50 | - | U | Yes |
| 2-Hexanone                | 20  | ug/m³ | 2.50 | - | U | Yes |
| Dibromochloromethane      | 11  | ug/m³ | 2.50 | - | U | Yes |
| 1,2-Dibromoethane (EDB)   | 9.6 | ug/m³ | 2.50 | - | U | Yes |
| Chlorobenzene             | 5.8 | ug/m³ | 2.50 | - | U | Yes |
| Ethyl Benzene             | 1.4 | ug/m³ | 2.50 | J | J | Yes |
| m,p-Xylene                | 4.6 | ug/m³ | 2.50 | J | J | Yes |
| o-Xylene                  | 2.2 | ug/m³ | 2.50 | J | J | Yes |
| Styrene                   | 5.3 | ug/m³ | 2.50 | - | U | Yes |
| Bromoform                 | 13  | ug/m³ | 2.50 | - | U | Yes |
| Cumene                    | 6.1 | ug/m³ | 2.50 | - | U | Yes |
| 1,1,2,2-Tetrachloroethane | 8.6 | ug/m³ | 2.50 | - | U | Yes |
| Propylbenzene             | 6.1 | ug/m³ | 2.50 | - | U | Yes |
| 4-Ethyltoluene            | 1.1 | ug/m³ | 2.50 | J | J | Yes |
| 1,3,5-Trimethylbenzene    | 6.1 | ug/m³ | 2.50 | - | U | Yes |
| 1,2,4-Trimethylbenzene    | 1.2 | ug/m³ | 2.50 | J | J | Yes |
| 1,3-Dichlorobenzene       | 7.2 | ug/m³ | 2.50 | J | J | Yes |
| 1,4-Dichlorobenzene       | 7.5 | ug/m³ | 2.50 | - | U | Yes |
| alpha-Chlorotoluene       | 6.5 | ug/m³ | 2.50 | - | U | Yes |
| 1,2-Dichlorobenzene       | 7.5 | ug/m³ | 2.50 | - | U | Yes |
| 1,2,4-Trichlorobenzene    | 37  | ug/m³ | 2.50 | - | U | Yes |
| Hexachlorobutadiene       | 53  | ug/m³ | 2.50 | - | U | Yes |
| Naphthalene               | 13  | ug/m³ | 2.50 | J | Ú | Yes |
|                           |     |       |      |   |   |     |

Sample ID: 1701428B-19A

Sample location: BMSMC, Humacao, PR

Sampling date: 26-Jan-17

Matrix: Air

| Analyte Name                    | Result | Units             | Dilution Factor | Lab Flag | Validation | Reportable |
|---------------------------------|--------|-------------------|-----------------|----------|------------|------------|
| Freon 12                        | 2.5    | ug/m³             | 2.46            | J        | J          | Yes        |
| Freon 114                       | 8.6    | ug/m <sup>3</sup> | 2.46            | -        | U          | Yes        |
| Chloromethane                   | 25     | ug/m <sup>3</sup> | 2.46            | -        | U          | Yes        |
| Vinyl Chloride                  | 3.1    | ug/m <sup>3</sup> | 2.46            | -        | U          | Yes        |
| 1,3-Butadiene                   | 2.7    | ug/m <sup>3</sup> | 2.46            | -        | U          | Yes        |
| Bromomethane                    | 48     | ug/m³             | 2.46            | -        | U          | Yes        |
| Chloroethane                    | 13     | ug/m³             | 2.46            | -        | U          | Yes        |
| Freon 11                        | 9.2    | ug/m³             | 2.46            | -        | -          | Yes        |
| Ethanol                         | 460    | ug/m³             | 2.46            | -        | J          | Yes        |
| Freon 113                       | 9.4    | ug/m³             | 2.46            | -        | U          | Yes        |
| 1,1-Dichloroethene              | 4.9    | ug/m³             | 2.46            | -        | U          | Yes        |
| Acetone                         | 47     | ug/m³             | 2.46            | -        | U          | Yes        |
| 2-Propanol                      | 880    | ug/m³             | 2.46            | -        | J          | Yes        |
| Carbon Disulfide                | 15     | ug/m <sup>3</sup> | 2.46            | -        | U          | Yes        |
| 3-Chloropropene                 | 15     | ug/m³             | 2.46            | -        | U          | Yes        |
| Methylene Chloride              | 43     | ug/m³             | 2.46            | -        | U          | Yes        |
| Methyl tert-butyl ether         | 18     | ug/m³             | 2.46            | -        | U          | Yes        |
| trans-1,2-Dichloroethene        | 4.9    | ug/m³             | 2.46            | -        | U          | Yes        |
| Hexane                          | 1.3    | ug/m³             | 2.46            | J        | J          | Yes        |
| 1,1-Dichloroethane              | 5.0    | ug/m³             | 2.46            | -        | U          | Yes        |
| 2-Butanone (Methyl Ethyl Ketone | ) 13   | ug/m³             | 2.46            | J        | J          | Yes        |
| cis-1,2-Dichloroethene          | 4.9    | ug/m³             | 2.46            | -        | U          | Yes        |
| Tetrahydrofuran                 | 0.45   | ug/m³             | 2.46            | J        | J          | Yes        |
| Chloroform                      | 6.0    | ug/m³             | 2.46            | -        | U          | Yes        |
| 1,1,1-Trichloroethane           | 6.7    | ug/m³             | 2.46            | -        | U          | Yes        |
| Cyclohexane                     | 4.2    | ug/m³             | 2.46            | -        | U          | Yes        |
| Carbon Tetrachloride            | 7.7    | ug/m³             | 2.46            | -        | U          | Yes        |
| 2,2,4-Trimethylpentane          | 1.5    | ug/m³             | 2.46            | J        | J          | Yes        |
| Benzene                         | 3.9    | ug/m³             | 2.46            | J        | U          | Yes        |
| 1,2-Dichloroethane              | 5.0    | ug/m³             | 2.46            | -        | U          | Yes        |
| Heptane                         | 2.0    | ug/m³             | 2.46            | J        | J          | Yes        |
| Trichloroethene                 | 6.6    | ug/m³             | 2.46            | -        | U          | Yes        |
| 1,2-Dichloropropane             | 5.7    | ug/m³             | 2.46            | -        | U          | Yes        |
| 1,4-Dioxane                     | 18     | ug/m³             | 2.46            | -        | U          | Yes        |
| Bromodichloromethane            | 8.2    | ug/m³             | 2.46            | -        | U          | Yes        |
| cis-1,3-Dichloropropene         | 5.6    | ug/m³             | 2.46            | -        | U          | Yes        |
| 4-Methyl-2-pentanone            | 7.8    | ug/m <sup>3</sup> | 2.46            | -        | -          | Yes        |
| Toluene                         | 8.1    | ug/m <sup>3</sup> | 2.46            | -        | -          | Yes        |

| trans-1,3-Dichloropropene | 17   | ug/m³ | 2.46 | - | - | Yes |
|---------------------------|------|-------|------|---|---|-----|
| 1,1,2-Trichloroethane     | 3.1  | ug/m³ | 2.46 | J | J | Yes |
| Tetrachloroethene         | 8.3  | ug/m³ | 2.46 | - | U | Yes |
| 2-Hexanone                | 2.2  | ug/m³ | 2.46 | J | J | Yes |
| Dibromochloromethane      | 10   | ug/m³ | 2.46 | - | U | Yes |
| 1,2-Dibromoethane (EDB)   | 9.4  | ug/m³ | 2.46 | - | U | Yes |
| Chlorobenzene             | 5.7  | ug/m³ | 2.46 | - | U | Yes |
| Ethyl Benzene             | 2.0  | ug/m³ | 2.46 | J | J | Yes |
| m,p-Xylene                | 7.8  | ug/m³ | 2.46 | - | - | Yes |
| o-Xylene                  | 3.9  | ug/m³ | 2.46 | J | J | Yes |
| Styrene                   | 0.64 | ug/m³ | 2.46 | J | J | Yes |
| Bromoform                 | 13   | ug/m³ | 2.46 | - | U | Yes |
| Cumene                    | 1.4  | ug/m³ | 2.46 | J | J | Yes |
| 1,1,2,2-Tetrachloroethane | 0.48 | ug/m³ | 2.46 | J | J | Yes |
| Propylbenzene             | 0.66 | ug/m³ | 2.46 | J | J | Yes |
| 4-Ethyltoluene            | 3.1  | ug/m³ | 2.46 | J | J | Yes |
| 1,3,5-Trimethylbenzene    | 0.74 | ug/m³ | 2.46 | J | J | Yes |
| 1,2,4-Trimethylbenzene    | 2.7  | ug/m³ | 2.46 | J | J | Yes |
| 1,3-Dichlorobenzene       | 15   | ug/m³ | 2.46 | - | - | Yes |
| 1,4-Dichlorobenzene       | 14   | ug/m³ | 2.46 | - | - | Yes |
| alpha-Chlorotoluene       | 6.4  | ug/m³ | 2.46 | - | U | Yes |
| 1,2-Dichlorobenzene       | 7.4  | ug/m³ | 2.46 | - | U | Yes |
| 1,2,4-Trichlorobenzene    | 36   | ug/m³ | 2.46 | - | U | Yes |
| Hexachlorobutadiene       | 52   | ug/m³ | 2.46 | - | U | Yes |
| Naphthalene               | 13   | ug/m³ | 2.46 | - | U | Yes |
|                           |      |       |      |   |   |     |

|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Number:1701428B<br>Date:01/24_&_26/17                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| actions decisio USEPA "Compo Specia Januar Analysi criteria documo The ha | REVIEW OF VOLATILE ORGALISM OF STATES OF STATE | were created to delineate required validation professional judgment to make more informed. The sample results were assessed according to wing order of precedence: QC criteria from rganic Compounds (VOCs) In Air Collected In hromatography/Mass Spectrometry (GC/MS) in the Validating Air Samples. Volatile Organic P # HW-31. Revision #6. June, 2014). The QC we worksheets are from the primary guidance data package received has been reviewed and |
| No. of<br>Trip bla<br>Field b<br>Equipr                                   | Project/SDG No.:1701477B<br>Samples:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| X<br>X<br>X<br>X<br>X                                                     | Data Completeness Sampling Integrity/Preservation GC/MS Tuning Internal Standard Performance Blanks Surrogate Recoveries  Il Comments:VOCs_(full_suite)_by_meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits                                                                                                                                                                                                                                                                                                                           |
| Definit<br>J-<br>U-<br>R-<br>UJ-                                          | ion of Qualifiers: Estimated results Compound not detected Rejected data Estimated nondetect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# DATA COMPLETENESS

| MISSING INFORMATION | DATE LAB. CONTACTED | DATE RECEIVED |
|---------------------|---------------------|---------------|
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     | ·                   |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |

| All criteria were met | X |
|-----------------------|---|
| Criteria were not met |   |
| and/or see below      | _ |

### SAMPLE INTEGRITY AND PRESERVATION

Canister used for sampling of the ambient air must be demonstrated clean, and leak free prior to sample collection. Cleanliness is demonstrated by the analysis of an individual canister or analysis of a representative canister, if only batch cleaning was required. Leak proof testing is performed on individual canisters. Canisters are used in conjunction with gauges, valves and flow controllers. Therefore, canister should be demonstrated clean and leak free inclusive of these components as appropriate.

### a. Leak proof test:

Was the pressure of each canister measured before shipping?

Was the pressure of each canister measured before sampling?

Did the canister hold vacuum/pressure within +/- 2 psi from the date shipped to the sampling date?

Yes or No

Yes or No

### Note:

1. The laboratory should be notified if the difference between the laboratory and field pressure is greater than 2 psi.

### Actions:

Actions for use of canisters with failing leak test criteria are indicated in Table 1 below.

Table 1. Canister Leak test Actions for TO-15 Analysis\*

|        | Difference in                                     | Action                              |                                         |  |
|--------|---------------------------------------------------|-------------------------------------|-----------------------------------------|--|
| Matrix | initial and 24<br>hour pressure<br>(psi) Criteria | Detected<br>Associated<br>Compounds | Non-Detected<br>Associated<br>Compounds |  |
| Air    | ≤ <b>5</b>                                        | No qualification                    |                                         |  |
| Air    | > 5                                               | J                                   | UJ or R                                 |  |

<sup>\*</sup>Excessive time period (> 3months) elapsed between leak test and actual use should be considered in evaluation of canister integrity.

### b. Cleanliness

Integrity of the canister used for sampling of air for analysis should be maintained at all times including time of shipment to the field, sampling, shipping back to the laboratory and time of analysis. Analytical results of canister cleaning verification must be taken into account in the validation of sample results.

Does the canister meet the cleanliness criteria?

Yes or No

Is the canister verification included in the data package?

Yes or No

### Actions:

Canister contamination actions are stated in Table 2 below.

**Note:** Laboratory stated that the SUMMA canisters employed were 100 % certified.

Table 2. Canister Contamination Actions for TO-15 Analyses

| Contamination<br>Type/level | Canister<br>Cleaning<br>Result                                                                                                                         | Sample Result                                             | Action for Samples                                                 |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|
|                             | Detects                                                                                                                                                | Analytes found in clean canister analysis are non-detects | No qualification required                                          |
|                             | <crql< td=""><td>&lt; CRQL<br/>≥ CRQL and &lt; 2x<br/>the CRQL</td><td>Report CRQL value with a U Report concentration of sample with a U</td></crql<> | < CRQL<br>≥ CRQL and < 2x<br>the CRQL                     | Report CRQL value with a U Report concentration of sample with a U |
| Clean Canister              | > CRQL                                                                                                                                                 | ≥ 2x the CRQL<br>< CRQL                                   | No qualification required Report CRQL value with a U               |
| analysis                    |                                                                                                                                                        | ≥ CRQL and ≤ clean canister value                         | Report clean canister value with a U                               |
|                             |                                                                                                                                                        | ≥ CRQL and > clean canister value                         | No qualification required                                          |
|                             | = CRQL                                                                                                                                                 | ≤CRQL<br>>CRQL                                            | Report CRQL value with a U No qualification required               |

### c. Holding time and sample integrity

SUMMA canisters are to minimize sample charges or loss for majority of the analyte. Sample integrity is maintained by ensuring the system is closed tight and canister pressure from the time of sampling to the time of analysis is maintained within a difference allowable due to temperature change.

Was the canister pressure measured at the conclusion of the sampling period?

Yes or No

Was the canister pressure measured upon arrival to the laboratory? Yes or No Was the canister pressure difference between sampling and analysis less than 5 psi? Yes or No

### Actions:

Qualify sample results using technical holding time information as stated in Table 3.

Pressure difference between sampling and analysis should be less than 5 psi. Qualify samples as per Table 3 requirements.

Table 3. Holding Time Actions for TO-15 Volatile Analyses

|        | Preserved                                                        |              | Action                              |                                      |  |
|--------|------------------------------------------------------------------|--------------|-------------------------------------|--------------------------------------|--|
| Matrix | (Pressure difference<br>between sampling<br>and analysis ≤ 5psi) | Criteria     | Detected<br>Associated<br>Compounds | Non-Detected Associated<br>Compounds |  |
| Air    | Yes                                                              | < 30<br>days | No qualification                    |                                      |  |
| All    | Yes                                                              | >30<br>days  | J                                   | UJ                                   |  |
| Air    | No                                                               | < 30<br>days | J                                   | UJ                                   |  |
| Alf    | No                                                               | >30<br>days  | J                                   | R                                    |  |

Complete table for all samples and note the integrity and/or preservation not within criteria

| SAMPLE ID | DATE<br>SAMPLED | DATE<br>ANALYZED                        | Pressure<br>difference < 5<br>psi | ACTION                         |
|-----------|-----------------|-----------------------------------------|-----------------------------------|--------------------------------|
|           |                 |                                         |                                   |                                |
|           |                 | commended method<br>ence < 5 psi betwee |                                   | umma canisters received lysis. |
|           |                 |                                         |                                   |                                |
|           |                 |                                         |                                   |                                |
|           |                 |                                         |                                   |                                |
|           |                 |                                         |                                   |                                |
|           |                 |                                         |                                   |                                |
|           |                 |                                         |                                   |                                |
|           |                 |                                         |                                   |                                |

# The following pressure conversion is used, if necessary

| PRESSURE CONVERSION TABLE |           |          |         |         |         |         |          |            |
|---------------------------|-----------|----------|---------|---------|---------|---------|----------|------------|
| PSI                       | ATM       | kgf/cm²  | in.H₂O  | mmHg    | in.Hg   | Kpa     | Bar      | mm H₂O     |
| 1                         | 0.068046  | 0.070307 | 27.7276 | 51.715  | 2.03602 | 6.895   | 0.6895   | 704.28104  |
| 14.696                    | 1         | 1.0332   | 407.484 | 760     | 29.921  | 101.325 | 1.01325  | 10350.0936 |
| 14.2233                   | 0.96784   | 1        | 394.38  | 735.559 | 28.959  | 98.096  | 0.98067  | 10000      |
| 0.036092                  | 0.002454  | 0.00253  | 1       | 1.8651  | 0.07343 | 0.249   | 0.00249  | 25.4       |
| 0.019336                  | 0.001315  | 0.001359 | 0.53616 | 1       | 0.03937 | 0.1333  | 0.001333 | 13.618464  |
| 0.491154                  | 0.0033421 | 0.03453  | 13.6185 | 25.4    | 1       | 3.3864  | 0.033864 | 345.9099   |
| 0.145                     | 0.00987   | 0.010197 | 4.0186  | 7.5006  | 0.2953  | 1       | 0.01     | 102.07244  |
| 14.5038                   | 0.98692   | 1.01972  | 402.156 | 750.062 | 29.53   | 100     | 1        | 10214.7624 |

| All criteria were metX          |  |
|---------------------------------|--|
| Criteria were not met see below |  |

### GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

## Gas Chromatograph/Mass Spectrometer (GC/MS) Instrument Performance Check

### Action:

**NOTES:** This requirement does not apply when samples are analyzed by the Selected Ion Monitoring (SIM) technique.

All mass spectrometer instrument conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortions for the sole purpose of meeting the method specifications are contrary to the Quality Assurance (QA) objectives, and are therefore unacceptable.

**NOTES:** No data should be qualified based on BFB or DFTTP failure. Instances of this should be noted in the narrative.

All ion abundance ratios must be normalized to m/z 95, the nominal base peak, even though the ion abundance of m/z 174 may be up to 120% that of m/z 95.

- 1. If samples are analyzed without a preceding valid instrument performance check, qualify all data in those samples as unusable (R).
- 2. If the laboratory has made minor transcription errors which do not significantly affect the data, the data reviewer should make the necessary corrections on a copy of the form.
- 3. If the laboratory has failed to provide the correct forms or has made significant transcription or calculation errors, the Region's designated representative should contact the laboratory and request corrected data. If the information is not available, the reviewer must use professional judgment to assess the data and notify the Project Officer (PO).
- 4. If ion abundance criteria are not met, professional judgment may be applied to determine to what extent the data may be utilized. When applying professional judgment to this topic, the most important factors to consider are the empirical results that are relatively insensitive to location on the chromatographic profile and the type of instrumentation. Therefore, the critical ion abundance criteria for BFB are the m/z 95/96, 174/175, 174/176, and 176/177 ratios. The relative abundances of m/z 50 and 75 are of lower importance. This issue is more critical for Tentatively Identified Compounds (TICs) than for target analytes.
- 5. Note, in the Data Review Narrative, decisions to use analytical data associated with BFB instrument performance check failures (not meeting contract requirements).
- 6. If the reviewer has reason to believe that instrument performance check criteria were achieved using techniques other than those described in the Compendium method TO-15 entitled "Determination Of Volatile Organic Compounds(VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry(GC/MS)", section 10.4, obtain additional information on the instrument performance checks. If the techniques employed are found to be at variance with the contract requirements, the performance and procedures of the laboratory may merit evaluation.
- 7. Use professional judgment to determine whether associated data should be qualified based on the spectrum of the mass calibration compound.

| List                                  | the                         | samples                           | affected:              |
|---------------------------------------|-----------------------------|-----------------------------------|------------------------|
| If no, use profes qualified or reject | , 0                         | ne whether the associated data    | should be accepted,    |
| XBFB tunii                            | ng was performed for every  | 24 hours of sample analysis.      |                        |
| XThe BFB                              | performance results were re | eviewed and found to be within th | ne specified criteria. |

If mass calibration is in error, all associated data are rejected.

| All criteria were met | X |
|-----------------------|---|
| Criteria were not met |   |
| and/or see below      |   |

### CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

| Date of initial calibration:              | _12/01/2016                         |
|-------------------------------------------|-------------------------------------|
| Date of initial calibration verification: |                                     |
| Dates of continuing calibration:_02/0     | )2/17(10:10_AM);_02/06/17_(9:15_AM) |
| Instrument ID numbers:                    | MSD-14                              |
| Matrix/Level:                             | Air/low                             |

| DATE         | LAB FILE ID#       | CRITERIA OUT      | COMPOUND                 | SAMPLES             |
|--------------|--------------------|-------------------|--------------------------|---------------------|
|              |                    | RFs, %RSD,_%D, r  |                          | AFFECTED            |
|              |                    |                   |                          |                     |
| Initial and  | continuing calibra | tions meet method | specific requirements ex | ccept for the cases |
| described in | this document.     |                   |                          |                     |
| 02/06/17     | 1701428B-21B       | 35 %              | Freon 11                 | 1701428B-16A;       |
|              |                    | 34 %              | Freon 113                | 1701428B-17A        |
|              |                    |                   |                          |                     |
|              |                    |                   |                          |                     |

Note: Results qualified (J or UJ) in affected sample.

The following criteria apply:

**Table 5. Initial Calibration Actions for TO-15 Analyses** 

|                                                                                                                                               | Acti                                        | ion                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|
| Criteria for TO-15 Analysis                                                                                                                   | Detected<br>Associated<br>Compounds         | Non-Detected<br>Associated<br>Compounds |
| RRF < 0.010 (poor response volatile target compounds, Table 4) RRF < 0.050 (all other volatile target compounds)                              | J (based on mass spectral R identification) |                                         |
| RRF > 0.010 (poor response volatile target compounds, Table 4) RRF > 0.050 (all other volatile target compounds)                              | No qualification                            |                                         |
| % RSD > 40.0 or < -40.0 (poor response volatile target compounds, Table 4) % RSD > 30.0 or < -30.0 (all other Volatile target compounds)      | No qualification                            |                                         |
| % RSD < 40.0 and > -40.0 (poor response volatile target compounds, Table 4)<br>% RSD < 30.0 and > -30.0 (all other volatile target compounds) | J                                           | Use professional judgment               |

Table 6. Continuing Calibration Verification (CCV) Actions for TO-15 Analyses

|                                                                                                                                      | Act                                             | Action                                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|--|--|
| Criteria for CCV                                                                                                                     | Detected<br>Associated<br>Compounds             | Non-Detected<br>Associated<br>Compounds |  |  |
| RRF < 0.010 (poor response volatile target compounds, Table 4) RRF < 0.050 (all other volatile target compounds)                     | J (based on mass<br>spectral<br>identification) | R                                       |  |  |
| RRF > 0.010 (poor response volatile target compounds, Table 4) RRF > 0.050 (all other volatile target compounds)                     | No qualification                                |                                         |  |  |
| %D > 40.0 or < -40.0 (poor response volatile target compounds, Table 4) %D > 30.0 or < -30.0 (all other Volatile target compounds)   | ble 4) (all other  UJ                           |                                         |  |  |
| %D < 40.0 and > -40.0 (poor response volatile target compounds, Table 4) %D < 30.0 and > -30.0 (all other volatile target compounds) | No qualification                                |                                         |  |  |

If the % D for daily calibration exceeds -90, use professional judgment to see if non-detects nee to be qualified as unusable "R"

A separate worksheet should be filled for each initial curve

Table 4. TO 15 Volatile Compounds List\*

| Compound                   | CAS<br>Number | Synonyms                                                        |  |
|----------------------------|---------------|-----------------------------------------------------------------|--|
| Acetone                    | 67-64-1       | Dimethyl ketone; Dimethylformaldehyde; 2-Propanone              |  |
| Allyl chloride             | 107-05-1      | 3-Chloropropene; 3-Chloroprene                                  |  |
| Benzene                    | 71-43-2       | Benzol; Benzine                                                 |  |
| Benzyl chloride            | 100-44-7      | Chloromethylbenzene; alpha-Chlorotoluene                        |  |
| Bromodichloromethane       | 75-27-4       | Monobromodichloromethane; Methane-bromodichloro                 |  |
| Bromoethene                | 593-60-2      | Vinyl bromide; Monobromoethene                                  |  |
| Bromoform                  | 75-25-2       | Tribromoethane                                                  |  |
| Bromomethane               | 74-83-9       | Methyl bromide; Monobromomethane                                |  |
| 1,3-Butadiene              | 106-99-0      | Biethylene; Erythrene; Pyrrolyene                               |  |
| Carbon disulfide           | 75-15-0       | Carbon bisulfide; Carbon sulfide                                |  |
| Carbon tetrachloride       | 56-23-5       | Carbon tet; Tetrachloromethane                                  |  |
| Chlorobenzene              | 108-90-7      | Monochlorobenzene; Chlorobenzol; Benzene chloride               |  |
| Chloroethane               | 75-00-3       | Ethyl chloride; Chlorene; Chloryl                               |  |
| Chloroethene               | 75-01-4       | Vinyl chloride; Ethylene monochloride                           |  |
| Chloroform                 | 67-66-3       | Trichloromethane; Methyltrichloride; Methane trichloride        |  |
| Chloromethane              | 74-87-3       | R40; Methyl chloride; Monochloromethane                         |  |
| Cyclohexane                | 110-82-7      | Hexamethylene; Hexahydrobenzene; Hexanaphthene                  |  |
| Dibromochloromethane       | 124-48-1      | Chlorodibromomethane                                            |  |
| 1,2-Dibromoethane          | 106-93-4      | EDB; Ethylene dibromide                                         |  |
| 1,2-Dichlorobenzene        | 95-50-1       | ODB; Chloroben                                                  |  |
| 1,3-Dichlorobenzene        | 541-73-1      | meta-Dichlorobenzene; m-Phenylenedichloride                     |  |
| 1,4-Dichlorobenzene        | 106-46-7      | para-Dichlorobenzene; Parazene; Santochlor                      |  |
| 1,1-Dichloroethane         | 75-34-3       | Ethylidene chloride; Ethylidene dichloride                      |  |
| 1,2-Dichloroethane         | 107-06-2      | Ethylene dichloride; Glycol dichloride; 1,2-DCA                 |  |
| 1,1-Dichloroethene         | 75-35-4       | 1,1-DCE; Vinylidene chloride                                    |  |
| cis-1,2-Dichloroethylene   | 156-59-2      | cis-1,2-DCE; cis-Acetylene dichloride                           |  |
| trans-1,2-Dichloroethylene | 156-60-5      | trans-1,2-DCE; trans-Acetylene dichloride                       |  |
| 1,2-Dichloropropane        | 78-87-5       | Propylene dichloride; Propylene chloride                        |  |
| cis-1,3-Dichloropropene    | 10061-01-5    | 1-Propene,1,3-dichloro-,(z)-; cis-1,3-Dichloro-1-Propene        |  |
| trans-1,3-Dichloropropene  | 10061-02-6    | trans-1,3-Dichloro-1-Propene; trans-1,3-Dichloropropylene       |  |
| 1,4-Dioxane                | 123-91-1      | Diethylene dioxide; Diethylene ether                            |  |
| Ethyl acetate              | 141-78-6      | Acetic acid ethyl ester; Acetic ether                           |  |
| Ethylbenzene               | 100-41-4      | Ethylbenzol; Phenylethane                                       |  |
| 4-Ethyltoluene             | 622-96-8      | 1-Ethyl-4-methyl benzene; p-Methylethylbenzene                  |  |
| Freon 11 (CCl3F)           | 75-69-4       | Trichlorofluoromethane; Fluorotrichloromethane; Fluorocarbon 11 |  |

| Freon 12 (CCl2F2)         | 75-71-8   | Dichlorodifluoromethane; Fluorocarbon 12                        |  |
|---------------------------|-----------|-----------------------------------------------------------------|--|
| Freon 113 (C2Cl3F3)       | 76-13-1   | 1,1,2-Trichloro-1,2,2-trifluoroethane; Fluorocarbon 113; 1,1,2- |  |
| 50 09                     |           | Trichlorotrifluoroethane                                        |  |
| Freon 114 (C2Cl2F4)       | 76-14-2   | 1,2-Dichlorotetrafluoroethane; Halocarbon 114; 1,2-Dichloro-    |  |
|                           |           | 1,1,2,2-tetrafluoroethane                                       |  |
| Heptane                   | 142-82-5  | Dipropylmethane; Heptyl hydride                                 |  |
| Hexachlorobutadiene       | 87-68-3   | 1,3-Hexachlorobutadiene; Perchlorobutadiene                     |  |
| Hexane                    | 110-54-3  | n-Hexane; Hexyl hydride                                         |  |
| 2-Hexanone                | 591-78-6  | Methyl butyl ketone; Butyl methyl ketone; Hexan-2-one           |  |
| Isopropyl alcohol         | 67-63-0   | 2-Propanol; Isopropanol                                         |  |
| Methylene chloride        | 75-09-2   | Dichloromethane; Methylene dichloride                           |  |
| Methyl ethyl ketone       | 78-93-3   | MEK; 2-Butanone; Ethyl methyl ketone                            |  |
| Methyl isobutyl ketone    | 108-10-1  | MIBK; 2-Pentanone; Hexone; Isopropylacetone                     |  |
| Methyl tert-butyl ether   | 1634-04-4 | MTBE; 2-Methoxy-2-methylpropane; tert-Butyl methyl ether        |  |
| Propylene                 | 115-07-1  | Propene; Methylethylene                                         |  |
| Styrene                   | 100-42-5  | Vinylbenzene; Phenylethylene                                    |  |
| 1,1,2,2-Tetrachloroethane | 79-34-5   | Tetrachloroethane; Acetylene tetrachloride; Bonoform            |  |
| Tetrachloroethene         | 127-18-4  | PCE; PERC; Perchloroethylene; Ethylene tetrachloride; Carbon    |  |
|                           |           | bichloride; Carbon dichloride                                   |  |
| Tetrahydrofuran           | 109-99-9  | Diethylene oxide; Butylene oxide                                |  |
| Toluene                   | 108-88-3  | Toluol; Methylbenzene                                           |  |
| 1,2,4-Trichlorobenzene    | 120-82-1  | 1,2,4-Trichlorobenzol                                           |  |
| 1,1,1-Trichloroethane     | 71-55-6   | Methyl chloroform; Trichloroethane                              |  |
| 1,1,2-Trichloroethane     | 79-00-5   | beta-Trichloroethane; Ethane trichloride; Vinyl trichloride     |  |
| Trichloroethene           | 79-01-6   | TCE; Acetylene trichloride; Ethinyl trichloride                 |  |
| 1,2,4-Trimethylbenzene    | 95-63-6   | Pseudocumene; Pseudocumol                                       |  |
| 1,3,5-Trimethylbenzene    | 108-67-8  | Mesitylene; Trimethylbenzol                                     |  |
| 2,2,4-Trimethylpentane    | 540-84-1  | Iso-octane; Isobutyltrimethylmethane                            |  |
| Vinyl acetate             | 108-05-4  | Acetic acid ethenyl ether; Ethenyl acetate                      |  |
| p-Xylene                  | 106-42-3  | p-Methyltoluene; 1,4-dimethylbenzene                            |  |
| m-Xylene                  | 108-38-3  | m-Methyltoluene; 1,3-dimethylbenzene                            |  |
| o-Xylene                  | 95-47-6   | o-Methyltoluene; 1,2-Dimethylbenzene                            |  |

<sup>\*</sup>Laboratories use different sets and subsets of analytes on as needed basis.

### NOTES:

Compounds in bold italicized letters may have poor GCMS response. These poor response compounds are evaluated using more relaxed relative response factor criteria as stated below.

| All criteria were met _ |    |
|-------------------------|----|
| Criteria were not met   |    |
| and/or see below        | _X |

# V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Blanks criteria and appropriate actions

| Blank Type                       | Blank Result          | Sample Result              | Action for Samples             |
|----------------------------------|-----------------------|----------------------------|--------------------------------|
|                                  | Detects               | Not detected               | No qualification required      |
|                                  |                       | < CRQL*                    | Report CRQL value with a U     |
|                                  | < CRQL *              | $\geq$ CRQL* and $\leq$ 2x | Report concentration of sample |
|                                  | CKQL.                 | the CRQL**                 | with a "U"                     |
|                                  |                       | $\geq$ 2x the CRQL**       | No qualification required      |
| Mathod Storage                   |                       | < CRQL*                    | Report CRQL value with a U     |
| Method, Storage,<br>Field, Trip, | > CRQL *              | $\geq$ CRQL* and $\leq$    | Report blank value for sample  |
| Instrument***                    |                       | blank concentration        | concentration with a U         |
| msu ument                        |                       | ≥ CRQL* and >              | No qualification required      |
|                                  |                       | blank concentration        | No quantication required       |
|                                  | = CRQL*               | ≤CRQL*                     | Report CRQL value with a U     |
|                                  | $- CRQL^*$ $> CRQL^*$ | > CRQL*                    | No qualification required      |
|                                  | Gross                 | Detects                    | Report blank value for sample  |
|                                  | contamination **      | Detects                    | concentration with a U         |

Table 7. Blank Actions for TO-15 Analyses

<sup>\*\*\*</sup> Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 µg/L.

| DATE                       | LAB ID               | LEVEL/        | COMPOUND                    | CONCENTRATION         |
|----------------------------|----------------------|---------------|-----------------------------|-----------------------|
| ANALYZED                   |                      | MATRIX        |                             | UNITS                 |
| _All_method_b<br>_document | lank_meet_method<br> | _specific_cri | teria_except_for_the_ca<br> | ses_described_in_this |
| _02/03/17                  |                      | Air/low       | Acetone                     |                       |
|                            |                      |               | Benzene                     | 0.072_ppbv            |

**Note:** Concentration detected below the reporting limit, results qualified following the table above.

<sup>\* 2</sup>x the CRQL for methylene chloride, 2-butanone and acetone.

<sup>\*\* 4</sup>x the CRQL for methylene chloride, 2-butanone, and acetone.

# Field/Equipment/Trip blank

| DATE<br>ANALYZED | LAB ID         | LEVEL/<br>MATRIX | COMPOUND             | CONCENTRATION<br>UNITS |
|------------------|----------------|------------------|----------------------|------------------------|
| No_field/trip/ed | quipment_blank | s_analyzed_wi    | th_this_data_package |                        |
|                  |                |                  |                      |                        |
|                  |                |                  |                      |                        |
|                  |                |                  |                      |                        |
|                  |                |                  |                      |                        |
|                  |                |                  |                      |                        |
|                  |                |                  |                      |                        |

# Field/trip blank actions

Field or Trip blank when available should be assessed for possible contaminants in the canister used for trip blank. This canister and its analytical results are specific to the trip blank sample **only**. If contaminants are present in the canister used for trip blank, its suitability for use as trip blank can be assessed using the following criteria.

Table 8. Field/Trip Blank suitability based on Canister contamination

| Clean canister<br>Result | Field/Trip Blank Result                                                                                   | Action for Field/Trip Blank                                                         |
|--------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Detects                  | Not detected                                                                                              | No qualification, no action for samples is required                                 |
| Detects                  | <pre>&lt; clean canister result or &gt; clean canister result but &lt; 2X the clean canister result</pre> | Report as non-detect "U", invalid as trip blank, no action for samples is required. |
|                          | $\geq 2x$ the clean canister result                                                                       | No qualification, valid trip blank for sample actions.                              |

| CONTAMINATION<br>SOURCE/LEVEL | COMPOUND | CONC/UNITS | AL/UNITS | SQL | AFFECTED<br>SAMPLES |
|-------------------------------|----------|------------|----------|-----|---------------------|
|                               |          |            |          |     |                     |
|                               |          |            |          |     |                     |
|                               |          |            |          |     |                     |
|                               |          |            |          |     |                     |

| All criteria were metX |  |
|------------------------|--|
| Criteria were not met  |  |
| and/or see below       |  |

ACTION

### SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

CURROCATE COMPOUND

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix: solid/aqueous

CAMPLEID

| SAMPLE ID        | SURRUG                         | SURRUGATE CUMPOUND |            |  |
|------------------|--------------------------------|--------------------|------------|--|
|                  | 1,2-DICHLOROETHANE-<br>d4      | Toluene-<br>d8     | 4-BFB      |  |
| _Surrogate_reco  | veries_within_laboratory_contr | ol_limits          |            |  |
|                  |                                |                    |            |  |
|                  |                                |                    |            |  |
|                  |                                |                    |            |  |
|                  |                                |                    |            |  |
| QC Limits* (Air) |                                |                    |            |  |
| LL_to_Ul         | 70to_130                       | _70to_13           | 3070to_130 |  |

- \* QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- \* If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

### Actions:

| QUALITY            | %R < 10% | %R = 10% - LL | %R > UL |
|--------------------|----------|---------------|---------|
| Positive results   | J        | J             | J       |
| Nondetects results | R        | UJ            | Accept  |

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

| All criteria were met _ | _X |
|-------------------------|----|
| Criteria were not met   |    |
| and/or see below        |    |

## VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices. LCS concentration should be in the middle of the calibration range and under the same sample conditions.

### 1. LCS Recoveries Criteria

Table 9. LCS/LCSD Actions for TO-15 Analyses

|                                                                | A                                   | Action                                  |  |
|----------------------------------------------------------------|-------------------------------------|-----------------------------------------|--|
| Criteria                                                       | Detected<br>Associated<br>Compounds | Non-detected<br>Associated<br>Compounds |  |
| Percent recovery Criteria                                      |                                     |                                         |  |
| %R > Upper Acceptance Limit (>130%)                            | J                                   | No qualification                        |  |
| %R in the acceptable range, 70-130%                            | No qu                               | No qualification                        |  |
| %R < Lower Acceptance Limit (< 70 %)                           | J UJ                                |                                         |  |
| %R < 50%                                                       | J                                   | R                                       |  |
| Lower Acceptance Limit $\leq$ %R $\leq$ Upper Acceptance Limit | No qualification                    |                                         |  |
|                                                                |                                     |                                         |  |
| Relative Percent Difference Criteria                           |                                     |                                         |  |
| $\% RPD \le 25\%$                                              | No qualification                    |                                         |  |
| % RPD > 25 %                                                   | J                                   | UJ                                      |  |

LCS ID COMPOUND % R QC LIMIT

\_LCS/LCSD\_(Blank\_spike)\_analyzed\_in\_this\_data\_package.\_%\_recoveries\_and\_RPD\_\_\_\_
\_within\_laboratory\_control\_limits\_except\_for\_the\_cases\_described\_in\_this\_document.\_\_\_\_
\_\_\_\_\_\_1701428B-22B\_\_\_\_\_Freon\_113\_\_\_\_\_\_\_\_131\_\_%\_\_\_\_\_\_70\_-\_130\_\_%\_\_
\_\_\_\_\_\_1701428B-22BB\_\_\_\_\_Naphthalene\_\_\_\_\_\_\_\_152\_\_%\_\_\_\_\_60\_-\_140\_\_%\_\_

**Note:** Detected compounds are qualified with a J qualifier in affected samples.

### 2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

|     |                                      | All criteria were met<br>Criteria were not met<br>and/or see belowX |
|-----|--------------------------------------|---------------------------------------------------------------------|
| IX. | FIELD/LABORATORY DUPLICATE PRECISION |                                                                     |
|     | Sample IDs:LCS/LCSD_(lab)            | Matrix:Air                                                          |
|     | Sample IDs:1701428B-16A/1701428B-17A | Matrix: Air                                                         |
|     | Sample IDs:1701428B-18A/1701428B-19A | Matrix:Air                                                          |

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. In the absence of QAPP guidance for validated data from field duplicates, the following action will be taken.

Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the vales for each compound. Note large RPDs (>50 %) in the narrative. Use professional judgment to qualify data when RPD > 50 %.

| COMPOUND                  | SQL | SAMPLE<br>CONC. | DUPLICATE CONC. | RPD     | ACTION                |
|---------------------------|-----|-----------------|-----------------|---------|-----------------------|
| 1701428B-18A/1701428B-19A |     |                 |                 |         |                       |
| Ethanol                   | 9.4 | 270             | 460             | 52      | Qualify results (J in |
| 2-propanol                | 12  | 460             | 880             | 63      | affected samples      |
| 1 1 ( //: 1 1 1 1         | 1 1 | 1 '0 0 '        |                 | 700 ::: |                       |

Laboratory/field duplicate analyzed with this data package. RPD within laboratory and method performed criteria for analytes with concentration > 5 x SQL except for the cases described in this document.

### Other suggested actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

### X. INTERNAL STANDARD PERFORMANCE

DATE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- \* Area of +40% or -40% of the IS area in the associated calibration standard (CCV standard or mid-point from initial calibration).
- \* Retention time (RT) within  $\pm$  20 seconds of the IS area in the associated calibration standard.

Table 10. Internal Standard Actions for TO-15 Analyses

|                                                                                                      | Action                               |                                          |
|------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------|
| Criteria                                                                                             | Detected<br>Associated<br>Compounds* | Non-detected<br>Associated<br>Compounds* |
| Area counts > 140% of CCV or mid-point standard from initial calibration)                            | J-                                   | No<br>qualification                      |
| Area counts < 60% of CCV or mid-point standard from initial calibration)                             | J+                                   | R                                        |
| Area counts $\geq$ 60% but $\leq$ 140% of CCV or mid-point standard from initial calibration)        | No qualification                     |                                          |
| RT difference > 20.0 seconds between samples CCV or midpoint standard from initial calibration)      | R*                                   |                                          |
| RT difference < 20.0 seconds between samples and CCV or mid-point standard from initial calibration) | No qualification                     |                                          |

<sup>\*</sup> Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.

IS OUT

SAMPLE ID

| RANGE                                                                                                       |                  |
|-------------------------------------------------------------------------------------------------------------|------------------|
| _Internal_standard_area_and_retention_times_within_laboratory_control_limits_<br>_and_calibration_standards | for_both_samples |
|                                                                                                             |                  |
|                                                                                                             |                  |
|                                                                                                             |                  |

IS AREA

ACCEPTABLE ACTION

| All criteria were metX_ |  |
|-------------------------|--|
| Criteria were not met   |  |
| and/or see below        |  |

# XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

1701428B-16A

Methyl-tert-butyl-ether

RF = 3.20626

[] = (7212)(400)/(87894)(3.20626)

= 10.24 ppbv OK

| All criteria were met | X |
|-----------------------|---|
| Criteria were not met |   |
| and/or see below      | _ |

# XII. QUANTITATION LIMITS

# A. Dilution performed

| SAMPLE ID                                                              | DILUTION FACTOR | REASONS FOR DILUTION |  |
|------------------------------------------------------------------------|-----------------|----------------------|--|
| Samples diluted by a factor of 2.50 or less except for the followings. |                 |                      |  |
| 1701428B-16A                                                           | 24.9            | Matrix interference  |  |
| 1701428B-17A                                                           | 24.2            | Matrix interference  |  |
|                                                                        |                 |                      |  |
|                                                                        |                 |                      |  |
|                                                                        |                 |                      |  |
|                                                                        |                 |                      |  |
|                                                                        |                 |                      |  |
|                                                                        |                 |                      |  |
|                                                                        |                 |                      |  |
|                                                                        |                 |                      |  |

# **System Performance**

### Action:

Use professional judgment to qualify the data if it is determined that system performance has degraded during sample analyses. Note, for Laboratory Project Officer (PO) action, any degradation of system performance which significantly affected the data.

Note:

### **Overall Assessment of Data**

### Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Note, for Laboratory Project Officer (PO) action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

Overall assessment of the data: Results are valid; the data can be used for

decision making purposes.